Непрерывные дискретные и цифровые сигналы. Аналоговые и дискретные сигналы

27.10.2018

Чтобы сообщение было передано от источника к получателю, необходима некоторая материальная субстанция - носитель информации. Сообщение, передаваемое с помощью носителя, называется сигналом. В общем случае сигнал - это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики (например, при передаче электрических сигналов могут изменяться напряжение и сила тока).

Параметрами сигнала называются его характеристики, которые используется для представления сообщений. В случае, когда параметр сигнала принимает последовательное во времени конечное число значений (при этом все они могут быть пронумерованы), сигнал называется дискретным, а сообщение, передаваемое с помощью таких сигналов - дискретным сообщением. Информация, передаваемая источником, в этом случае также называется дискретной. Если же источник вырабатывает непрерывное (аналоговое) сообщение (соответственно параметр сигнала - непрерывная функция от времени), сигнал называется непрерывным (аналоговым), а сообщение, передаваемое с помощью таких сигналов, - аналоговым сообщением

Пример дискретного сообщения - процесс чтения книги, информация в которой представлена текстом, т.е. дискретной последовательностью отдельных значков (букв). Примером непрерывного сообщения служит человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое этой волной в точке нахождения приемника - человеческого уха.

Типичный пример аналогового сигнала - напряжение на выходе из микрофона при разговоре перед ним, пении или игре на музыкальных инструментах. Давление воздуха при звучании источника изменяется в небольших пределах относительно нормального атмосферного. Мембрана микрофона, прогибаясь под действием звукового давления, создает некоторое напряжение на выводах звуковой катушки микрофона. Это напряжение прямо пропорционально звуковому давлению, т.е. изменяется аналогично ему, откуда и происходит название «аналоговый сигнал».

АНАЛОГОВЫЙ СИГНАЛ.

Аналоговые сигналы используют в телефонной связи, радиовещании и телевидении. Это проще технически, да и история развития радиотехники сложилась так, что первыми стали применяться аналоговые сигналы. Это никоим образом не относится к телеграфу, где всегда господствовала цифра.

При обычном разговоре мощность громких звуков человеческого голоса в 10 000 раз превосходит интенсивность слабых звуков.

При наличии шумов (в поезде метро, на аэродроме) слабые звуки не должны маскироваться шумом, чтобы их тоже можно было разобрать. Вот почему приходится напрягать голос в метро, кричать в ухо собеседнику на аэродроме, когда ревет двигателями реактивный лайнер.

При передаче аналоговых сигналов требуется значительно большее отношение сигнал-шум, чем при передаче двоичных цифровых сигналов.

Большим недостатком аналоговых сигналов является и то, что аналоговые сигналы нельзя регенерировать, поскольку заранее не известна их форма (известный сигнал незачем передавать!).

При использовании аналогового сигнала в междугородной телефонной линии связи качество связи часто было плохим. Объясняется это тем, что слабый речевой сигнал при передаче по проводной телефонной линии необходимо периодически усиливать через каждые 100 - 200 км. Гудят провода, шумят усилители, и каждый из этих источников помех все больше и больше искажает передаваемый сигнал.

Ввиду преимущества двоичных сигналов перед аналоговыми сигналами в настоящее время широко используются двоичные каналы для передачи аналоговых речевых сигналов. Внедрение подобных систем на междугородных линиях связи значительно улучшило качество связи.

6.2. ИЗМЕРЕНИЕ ОТНОШЕНИЯ СИГНАЛ – ШУМ.

Отношение наибольшей мгновенной мощности сигнала P max к наименьшей P min (динамический диапазон сигнала D s) обычно измеряется в децибелах.

Бел – это такая разность уровней мощности, отношение которых равно 10 и соответственно десятичный логарифм этого отношения равен 1.

Децибел – это десятичная часть Бела.

(дБ) разница уровней в децибелах есть десять десятичных логарифмов отношения мощностей.

Т.к. =- средняя мощность сигнала равна квадрату амплитуды сигнала и т.к. = - средняя мощность шума равна квадрату амплитуды шума, то

(дБ) разница уровней в децибелах есть двадцать десятичных логарифмов отношения напряжений.

Для хорошего качества речи, передаваемой по телефону, необходимо обеспечить отношение сигнал-шум по мощности примерно 10000, или 40 децибел (дБ): (дБ). Другими словами, необходимо обеспечить отношение сигнал-шум по напряжению примерно 100: (дБ)

Опытные радисты могут разобрать речь при отношении сигнал - шум по напряжению около десяти, но при условии, что передаваемый текст знаком и привычен.

Конец работы -

Эта тема принадлежит разделу:

ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ

ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ... Кафедра ИС Информационное обеспечение робототехнических и мехатронных...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ФОРМУЛА ХАРТЛИ.
Если число состояний системы равно N, то это равносильно информации, даваемой I ответами типа «ДА-НЕТ» на вопросы, поставленные так, что «ДА» и «НЕТ» одинаково вероятны. N=2I

ЭНТРОПИЯ В ИНФОРМАТИКЕ И ФИЗИКЕ.
Как в физическом, так и в информационном смысле величина энтропии характеризует степень разнообразия состояний системы. Формула Шеннона совпадает с формулой Больцмана для энтропии физическ

ВЕРОЯТНОСТНЫЙ И ОБЪЕМНЫЙ ПОДХОДЫ К ИЗМЕРЕНИЮ КОЛИЧЕСТВА ИНФОРМАЦИИ.
Определить понятие «количество информации» довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из

РАЗЛИЧНЫЕ АСПЕКТЫ АНАЛИЗА ИНФОРМАЦИИ.
Как ни важно измерение информации, к нему не сводятся все связанные с этим понятием проблемы. При анализе информации на первый план могут выступить такие ее свойства как истинность

БУКВА (ЗНАК, СИМВОЛ). АЛФАВИТ.
Информация передается в виде сообщений. Дискретная информация записывается с помощью некоторого конечного набора знаков, которые будем называть буквами, не вкладывая в это слово привычного ограниче

КОДИРОВЩИК И ДЕКОДИРОВЩИК.
В канале связи сообщение, составленное из букв (знаков, символов) одного алфавита, может преобразовываться в сообщение из букв другого алфавита. Кодом называется правило, описывающее однозначное со

МЕЖДУНАРОДНЫЕ СИСТЕМЫ БАЙТОВОГО КОДИРОВАНИЯ.
Информатика и ее приложения интернациональны. Это связано как с объективными потребностями человечества в единых правилах и законах хранения, передачи и обработки информации, так и с тем, что в это

ПОМЕХОУСТОЙЧИВОЕ КОДИРОВАНИЕ ИНФОРМАЦИИ.
Теория помехоустойчивого кодирования является достаточно сложной, и наши рассуждения носят весьма упрощенный характер. Основным условием обнаружения и исправления ошибок в принимаемых кодовых комби

ПЕРЕДАЧА ИНФОРМАЦИИ.
Теоретической основой передачи информации является Теория сигналов и передачи информации. Теория сигналов и передачи информации изучает процессы формирования, накопления, сбора, измерения, перерабо

ИЗ ИСТОРИИ РАЗВИТИЯ ПЕРЕДАЧИ ИНФОРМАЦИИ.
Проблемы организации связи уходят в глубь веков. Само существо человека требовало общения и обмена информацией. Прообразом линий связи была сигнализация с помощью костров, использование оптических

ТЕОРЕМА КОТЕЛЬНИКОВА.
Теорема Котельникова называется также теоремой отсчетов или теоремой о выборках. Выборкой называется отсчет амплитуды сигнала в

ИНФОРМАЦИОННАЯ ЕМКОСТЬ ДИСКРЕТНОГО СИГНАЛА (СООБЩЕНИЯ). ФОРМУЛА ШЕННОНА.
Уровень шумов (помех) не позволяет точно определить амплитуду сигнала и в этом смысле вносит некоторую неопределенность в значение отсчетов сигнала. Если бы шума не существовало, то число дискретны

РЕГЕНЕРАЦИЯ ДВОИЧНЫХ СИГНАЛОВ.
Сигналы, передаваемые двоичным кодом, удобны во многих отношениях. Как и любые цифровые дискретные сигналы, их можно регенерировать, т.е. восстановить, воссоздать их форму, искаженную помехами. Кос

ПОМЕХОЗАЩИЩЕННОСТЬ ДВОИЧНЫХ СИГНАЛОВ.
Большое достоинство двоичных цифровых сигналов заключается в том, что они требуют минимального отношения сигнал - помеха в канале связи, т.е. являются наиболее помехозащищенными. Поясним, что это т

КОДИРОВАНИЕ ДВОИЧНЫХ СИГНАЛОВ.
Любой сигнал переносится либо энергией, либо веществом. Это либо акустическая волна (звук), либо электромагнитное излучение (свет, радиоволна), либо лист бумаги (написанный текст), либо каменная ск

ДИСКРЕТИЗАЦИЯ И КОДИРОВАНИЕ АНАЛОГОВОГО СИГНАЛА.
Непрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [а, Ь]. Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискрети

ЦИФРОВАЯ ТЕЛЕФОННАЯ СВЯЗЬ.
Вот как описывал процесс телефонной связи на заре возникновения цифровых телефонных систем автор книги «Посвящение в радиоэлектронику» В.Т. Поляков. «Несколько лет назад мне довелось пройт

ЦИФРОВАЯ ТЕЛЕГРАФНАЯ СВЯЗЬ.
Оценим, каков будет поток информации, если телефонный разговор заменить телеграфной передачей того же текста. При среднем темпе речи человек произносит 1 - 1,5 слова в секунду. Каждое слово состоит

ЦИФРОВОЕ ТЕЛЕВИДЕНИЕ.
Трудности представления телевизионных изображений в цифровой форме очевидны. Пусть на каждый элемент приходится один отсчет сигнала, который необходимо преобразовать в соответствующую кодовую комби

ПАРАМЕТРЫ РАДИОСИГНАЛОВ.
Информация есть совокупность сведений о событиях, явлениях, предметах - одним словом, обо всем, что имеется и происходит в мире. Информацию представляют в виде письменного текста, шифрованной цифро

МНОГОКАНАЛЬНЫЕ ЛИНИИ СВЯЗИ. УПЛОТНЕНИЕ ИНФОРМАЦИИ.
МНОГОКАНАЛЬНЫЕ ТЕЛЕФОННЫЕ ЛИНИИ. В нашей стране развивается и совершенствуется Единая автоматизированная сеть связи (ЕАСС). Ее основу составляют кабельные и радиорелейные линии связи, прич

ИЗ ИСТОРИИ КАБЕЛЬНОЙ СВЯЗИ.
В 1876 г. Александр Белл получил патент на изобретение "Телеграф, при помощи которого можно передавать человеческую речь". Телефон был встречен во всем мире с большим энтузиазмом и через

ПРИНЦИП ОПТОВОЛОКОННОЙ СВЯЗИ.
Благодаря огромной пропускной способности оптический кабель все шире применяется в информационно-вычислительных и телевизионных сетях, где требуется передавать большие объемы информации с исключите

АППАРАТНЫЕ СРЕДСТВА.
Локальные сети (ЛС) объединяют относительно небольшое число компьютеров (обычно от 10 до 100, хотя изредка встречаются и большие) в пределах одного помещения (учебный компьютерный класс), здания ил

КОНФИГУРАЦИЯ ЛОКАЛЬНЫХ СЕТЕЙ.
В простейших сетях с небольшим числом компьютеров они могут быть полностью равноправными; сеть в этом случае обеспечивает передачу данных от любого компьютера к любому другому для коллективной рабо

ОРГАНИЗАЦИЯ ОБМЕНА ИНФОРМАЦИЕЙ.
В любой физической конфигурации поддержка доступа от одного компьютера к другому выполняется программой – сетевой операционной системой, которая по отношению к операционным системам (ОС) отдельных

ОБЩАЯ ХАРАКТЕРИСТИКА СПУТНИКОВОЙ СВЯЗИ.
Идея использования космического пространства давно волновала лучшие умы человечества. Пока не могли вывести на околоземную орбиту летательный аппарат с отражателем на борту, космическая связь остав

ПРИНЦИПЫ СПУТНИКОВОЙ СВЯЗИ.
Рассмотрим некоторые наиболее важные принципы, используемые в спутниковых системах, предназначенных для передачи информации. Остановимся сначала на ретрансляторе информации. Особенность спутниковог

НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.
В непозиционной системе значение каждого символа в числе не зависит от позиции, которую занимает знак в записи числа (может быть зависимость от места символа по отношению к другому символу.). Наибо

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.
В позиционной системе значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Основанием системы счисления называетсяколичество различ

ПЕРЕВОД ЧИСЕЛ ИЗ ДЕСЯТИЧНОЙ СИСТЕМЫ В ДРУГУЮ СИСТЕМУ.
Ø Целая и дробная части переводятся порознь. Ø Чтобы перевести целую часть числа из десятичной системы в систему с основанием В, необходимо разделить ее на В. О

ПЕРЕВОД ЧИСЕЛ В ДЕСЯТИЧНУЮ СИСТЕМУ ИЗ ДРУГИХ СИСТЕМ.
ПЕРЕВОД ЦЕЛЫХ ЧИСЕЛ В ДЕСЯТИЧНУЮ СИСТЕМУ. 23510=2*102+3*101+5*100; 011012=0*24+1*23+1*22+0*

ВЗАИМНЫЕ ПРЕОБРАЗОВАНИЯ ДВОИЧНЫХ, ВОСЬМЕРИЧНЫХ И ШЕСТНАДЦАТЕРИЧНЫХ ЧИСЕЛ.
С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатеричных чисел. Для перевода целого двоичного числа в восьмеричное нео

ЯЗЫКИ ПРОГРАММИРОВАНИЯ. ОБЩАЯ ХАРАКТЕРИСТИКА.
Языки программирования являются искусственными языками, специально созданными для общения человека с ЭВМ. Языки программирования представляют собой системы обозначений, предназначенные для точного

ЯЗЫК ПРОГРАММИРОВАНИЯ СИ. ИСТОРИЯ СОЗДАНИЯ. ОБЩАЯ ХАРАКТЕРИСТИКА.
Язык программирования C (Си) был разработан Деннисом Ритчи (Dennis Ritchie) в 1972 году как инструмент написания операционной системы (ОС) UNIX для электронной вычислительной машины (ЭВМ) PDP-11 фи

ЯЗЫК ПРОГРАММИРОВАНИЯ СИ. ПРОЦЕСС СОЗДАНИЯ ИСПОЛНЯЕМОГО ФАЙЛА.
· Исходный файл (текст программы на языке программирования Си) создается в редакторе системы программирования, например Borland C++. · Расширенный исходный файл

ЯЗЫК ПРОГРАММИРОВАНИЯ СИ. ОСНОВНЫЕ ПОНЯТИЯ.
Идентификаторы – это имена переменных, констант, функций, меток и т.п. Внешние идентификаторы (имена функций и глобальных переменных, участвующих в процессе компоновки) согласно AN

Базовые типы данных;
· char- символьные; · int - целые; · float – с плавающей точкой; · double – с плавающей точкой двойной длины; · void – пустой, не имеющий значения. Тип

Строковые константы.
Строковые константы определяется как последовательность символов, заключенная в двойные кавычки: ”Строковая константа”. ПРИМЕЧАНИЕ: См. 4. СТРОКИ И СТРОКОВЫЕ КОНСТАНТЫ. Ко

Инициализаторы.
Для присваивания начальных значений переменным при их определении используются инициализаторы. Инициализаторы имеют форму: = значение; = {список значений}; /* сложные зна

ЯЗЫК ПРОГРАММИРОВАНИЯ СИ. СТРУКТУРА ПРОСТОЙ ПРОГРАММЫ.
/* ПРОГРАММА: information.c – пример вывода сообщения. /* 1 */ */ /*#############################################*/ /* 2 */ /*============================= inclu

Сигнал информационный - физический процесс, имеющий для человека или технического устройства информационное значение. Он может быть непрерывным (аналоговым) или дискретным

Термин “ «сигнал» очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Сигнал - это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др

Сигнал является материальным носителем информации, которая передается от источника к потребителю. Он может быть дискретным и непрерывным (аналоговым)

Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые).



Примеры непрерывных пространств и соответствующих физических величин: (прямая: электрическое напряжение; окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала; отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.)

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.

Дискретный сигнал слагается из счетного множества (т.е. такого множества, элементы которого можно пересчитать) элементов (говорят – информационных элементов). Например, дискретным является сигнал “кирпич”. Он состоит из следующих двух элементов (это синтаксическая характеристика данного сигнала): красного круга и белого прямоугольника внутри круга, расположенного горизонтально по центру. Именно в виде дискретного сигнала представлена та информация, которую сейчас осваивает читатель. Можно выделить следующие ее элементы: разделы (например, “Информация”), подразделы (например, “Свойства”), абзацы, предложения, отдельные фразы, слова и отдельные знаки (буквы, цифры, знаки препинания и т.д.). Этот пример показывает, что в зависимости от прагматики сигнала можно выделять разные информационные элементы. В самом деле, для лица, изучающего информатику по данному тексту, важны более крупные информационные элементы, такие как разделы, подразделы, отдельные абзацы. Они позволяют ему легче ориентироваться в структуре материала, лучше его усваивать и готовиться к экзамену. Для того, кто готовил данный методический материал, помимо указанных информационных элементов, важны также и более мелкие, например, отдельные предложения, с помощью которых излагается та или иная мысль и которые реализуют тот или иной способ доступности материала. Набор самых “мелких” элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением .

Дискретизация – это преобразование непрерывного сигнала в дискретный (цифровой).

Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно – цифрами, каждая из которых четко отличается друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно – положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений).

Непрерывный сигнал – отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука. В виде непрерывного сигнала представлена настоящая информация для тех студентов – потребителей, которые посещают лекции по информатике и через звуковые волны (иначе говоря, голос лектора), носящие непрерывный характер, воспринимают материал.

Как мы увидим в дальнейшем, дискретный сигнал лучше поддается преобразованиям, поэтому имеет преимущества перед непрерывным. В то же время, в технических системах и в реальных процессах преобладает непрерывный сигнал. Это вынуждает разрабатывать способы преобразования непрерывного сигнала в дискретный.\

Для преобразования непрерывного сигнала в дискретный используется процедура, которая называется квантованием .

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Понятие стыка цифровых АТС

ЦСК должна обеспечивать интерфейс (стык) с аналоговыми и цифровыми абонентскими линиями (АЛ) и системами передачи.

Стыком называется граница между двумя функциональными блоками, которая задается функциональными характеристиками, общими характеристиками физического соединения, характеристиками сигналов и другими характеристиками в зависимости от специфики.

Стык обеспечивает одноразовое определение параметров соединения между двумя уст­ройствами. Эти параметры относятся к типу, количеству и функциям соединительных цепей, а также к типу, форме и последовательности сигналов, которые передаются по этим цепям.

Точное определение типов, количества, формы и последовательности соединений и взаимосвязи между двумя функциональными блоками на стыке между ними задается спе­цификацией стыка.

Стыки цифровой АТС можно разделить на следующие

Аналоговый абонентский стык;

Цифровой абонентский стык;

Абонентский стык ISDN;

Сетевые (цифровые и аналоговые) стыки.

Кольцевые соединители

Кольцевые структуры находят применение в целом ряде областей связи. Прежде всего это кольцевые системы передачи с временным группообразованием, которые по существу имеют конфигурацию последовательно соединенных однонаправленных линий, образую­щих замкнутую цепь или кольцо. При этом в каждом узле сети реализуются две основные функции:

1) каждый узел работает как регенератор, чтобы восстановить входящий цифровой сиг­нал и передать его заново;

в узлах сети опознается структура цикла временного группообразования и осуществ­ляется связь по кольцу посредством

2) удаления и ввода цифрового сигнала в определенных канальных интервалах, приписанных к каждому узлу.

Возможность перераспределения канальных интервалов между произвольными парами узлов в кольцевой системе с временным группообразованием означает, что кольцо является распределенной системой передачи и коммутации. Идея одновременности передачи и ком­мутации в кольцевых структурах была распространена на цифровые коммутационные поля.

В такой схеме с помощью единственного канала между любыми двумя узлами может быть установлено дуплексное соединение. В этом смысле кольцевая схема выполняет про­странственно-временное преобразование координат сигнала и может быть рассмотрена как один из вариантов построения S/T-ступени.

Аналоговый, дискретный, цифровой сигналы

В системах электросвязи информация передается с помощью сигналов. Международный союз электросвязи дает следующее определение сигнала:

Сигналом систем электросвязи называется совокупность электромагнитных волн, ко­торая распространяется по одностороннему каналу передачи и предназначена для воздей­ствия на приемное устройство.

1) аналоговый сигнал - сигнал у которого каждый представляющий параметр задается функцией непрерывного времени с непрерывным множеством возможных значений

2) дискретный по уровню сигнал - сигнал, у которого значения представляющих пара­метров задается функцией непрерывного времени с конечным множеством возможных зна­чений. Процесс дискретизации сигнала по уровню носит название квантования;

3) дискретный по времени сигнал - сигнал, у которого каждый представляющий пара­метр задается функцией дискретного времени с непрерывным множеством возможных зна­чений

4) цифровой сигнал - сигнал, у которого значения представляющих параметров задается функцией дискретного времени с конечным множеством возможных значений

Модуляция - это преобразование одного сигнала в другой путем изменения па­раметров сигнала-переносчика в соответствии с преобразуемым сигналом. В качестве сиг­нала-переносчика используют гармонические сигналы, периодические последовательности импульсов и т.д.

Например, при передаче по линии цифрового сигнала двоичным кодом может появиться постоянная составляющая сигнала за счет преобладания единиц во всех кодовых словах.

Отсутствие же постоянной составляющей в линии позволяет использовать согласующие трансформаторы в линейных устройствах, а также обеспечить дистанционное питание реге­нераторов постоянным током. Чтобы избавиться от нежелательной постоянной составляющей цифрового сигнала, перед посылкой в линию двоичные сигналы преобразуются с помощью специальных кодов. Для первичной цифровой системы передачи (ЦСП) принят код HDB3.

Кодирование двоичного сигнала в модифицированный квазитроичный сигнал с ис­пользованием кода HDB3 производится по следующим правилам (рис. 1.5).


Рис. 1.5. Двоичный и соответствующий ему HDB3 коды

Импульсно-кодовая модуляция

Преобразование непрерывного первичного аналогового сигнала в цифровой код называется импульсно-кодовой модуляцией (ИКМ). Основными операциями при ИКМ являются операции дискретизации по времени, квантова­ния (дискретизации по уровню дискретного по времени сигнала) и кодирования.

Дискретизацией аналогового сигнала по времени называется преобразование, при кото­ром представляющий параметр аналогового сигнала задается совокупностью его значений в дискретные моменты времени, или, другими словами, при котором из непрерывного анало­гового сигнала c(t) (рис. 1.6, а) получают выборочные значения с„ (рис. 1.6, б). Значения представляющего параметра сигнала, полученные в результате операции дискретизации по времени, называются отсчетами.

Наибольшее распространение получили цифровые системы передачи, в которых при­меняется равномерная дискретизация аналогового сигнала (отсчеты этого сигнала произво­дятся через одинаковые интервалы времени). При равномерной дискретизации используют­ся понятия: интервал дискретизации At (интервал времени между двумя соседними отсче­тами дискретного сигнала) и частота дискретизации Fd (величина, обратная интервалу дискретизации). Величина интервала дискретизации выбирается в соответствии с теоремой Котельникова.

Согласно теореме Котельникова, аналоговый сиг­нал с ограниченным спектром и бесконечным интерва­лом наблюдения можно без ошибок восстановить из дискретного сигнала, полученного дискретизацией ис­ходного аналогового сигнала, если частота дискретиза­ции в два раза больше максимальной частоты спектра аналогового сигнала:

Теорема Котельникова

Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста-Шеннона) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчѐтам, взятым с частотой более удвоенной максимальной частоты спектра Fmax.

Назначение радиоэлектронных устройств, как известно, - получение, преобразование, передача и хранение информации, представленной в форме электрических сигналов. Сигналы, действующие в электронных устройствах, и соответственно сами устройства делят на две большие группы: аналоговые и цифровые.

Аналоговый сигнал - сигнал, непрерывный по уровню и во времени, т. е. такой сигнал существует в любой момент времени и может принимать любой уровень из заданного диапазона.

Квантованный сигнал - сигнал, который может принимать только определенные квантованные значения, соответствующие уровням квантования. Расстояние между двумя соседними уровнями - шаг квантования.

Дискретизированный сигнал - сигнал, значения которого заданы только в моменты времени, называемые моментами дискретизации. Расстояние между соседними моментами дискретизации - шаг дискретизации . При постоянном применима теорема Котельникова: , где - верхняя граничная частота спектра сигнала.

Цифровой сигнал - сигнал, квантованный по уровню и дискретизированный во времени. Квантованные значения цифрового сигнала обычно кодируются некоторым кодом, при этом каждый выделенный в процессе дискретизации отсчет заменяется соответствующим кодовым словом, символы которого имеют два значения - 0 и 1 (рис. 2.1).

Типичными представителями устройств аналоговой электроники являются устройства связи, радиовещания, телевидения. Общие требования, предъявляемые к аналоговым устройствам, - минимальные искажения. Стремление выполнить эти требования приводит к усложнению электрических схем и конструкции устройств. Другая проблема аналоговой электроники - достижение необходимой помехоустойчивости, ибо в аналоговом канале связи шумы принципиально неустранимы.

Цифровые сигналы формируются электронными схемами, транзисторы в которых либо закрыты (ток близок к нулю), либо полностью открыты (напряжение близко к нулю), поэтому на них рассеивается незначительная мощность и надежность цифровых устройств получается более высокой, чем аналоговых.

Цифровые устройства более помехоустойчивы, чем аналоговые, так как небольшие посторонние возмущения не вызывают ошибочного срабатывания устройств. Ошибки появляются только при таких возмущениях, при которых низкий уровень сигнала воспринимается как высокий, или наоборот. В цифровых устройствах можно также применить специальные коды, позволяющие исправить ошибки. В аналоговых устройствах такой возможности нет.

Цифровые устройства нечувствительны к разбросу (в допустимых пределах) параметров и характеристик транзисторов и других элементов схем. Безошибочно изготовленные цифровые устройства не нужно настраивать, а их характеристики полностью повторяемы. Все это очень важно при массовом изготовлении устройств по интегральной технологии. Экономичность производства и эксплуатации цифровых интегральных микросхем привела к тому, что в современных радиоэлектронных устройствах цифровой обработке подвергаются не только цифровые, но и аналоговые сигналы. Распространены цифровые фильтры, регуляторы, перемножители и др. Перед цифровой обработкой аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП). Обратное преобразование - восстановление аналоговых сигналов по цифровым - выполняется с помощью цифроаналоговых преобразователей (ЦАП).

При всем многообразии задач, решаемых устройствами цифровой электроники, их функционирование происходит в системах счисления, оперирующих всего двумя цифрами: нуль (0) и единица (1).

Работа цифровых устройств обычно тактируется достаточно высокочастотным генератором тактовых импульсов. В течение одного такта реализуется простейшая микрооперация - чтение, сдвиг, логическая команда и т. п. Информация представляется в виде цифрового слова. Для передачи слов используются два способа - параллельный и последовательный. Последовательное кодирование применяется при обмене информацией между цифровыми устройствами (например, в компьютерных сетях, модемной связи). Обработка информации в цифровых устройствах реализуется при использовании параллельного кодирования информации, обеспечивающего максимальное быстродействие.

Элементную базу для построения цифровых устройств составляют интегральные микросхемы (ИМС), каждая из которых реализуется с использованием определенного числа логических элементов - простейших цифровых устройств, выполняющих элементарные логические операции.

Сигнал определяется как напряжение или ток, который может быть передан как сообщение или как информация. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного илипеременного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами.

Цифровым сигналом называется сигнал, определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.

В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметическим цифровым сигнальным процессором (DSP). После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме обработки физических аналоговых сигналов — проблеме извлечения информации.

Цели обработки сигналов.

Главная цель обработки сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов.

Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале.

В частности, изменение формата сигнала происходит при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае используются аналоговые методы, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию СВЧ диапазона, коаксиальный или оптоволоконный кабель.

В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи (как в ИКМ-системе).

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

Промышленные системы сбора данных и системы управления используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют процессом. Обратите внимание, что эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала (signal conditioners) и DSP (или микроконтроллеров).

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, автокорреляция, свертка и т.д., часто используются для выполнения этой задачи и в аналоговой, и в цифровой областях.

ЦЕЛИ ОБРАБОТКИ СИГНАЛОВ
  • Извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие,временные соотношения)
  • Преобразование формата сигнала (телефония с разделением каналов FDMA, TDMA, CDMA)
  • Сжатие данных (модемы, сотовые телефоны, телевидение HDTV, сжатие MPEG)
  • Формирование сигналов обратной связи (управление промышленными процессами)
  • Выделение сигнала из шума (фильтрация, автокорреляция, свертка)
  • Выделение и сохранение сигнала в цифровом виде для последующей обработки (БПФ)

Формирование сигналов

В большинстве приведенных ситуаций (связанных с использованием DSP-технологий), необходимы как АЦП, так и ЦАП. Тем не менее, в ряде случаев требуется только ЦАП, когда аналоговые сигналы могут быть непосредственно сгенерированы на основе DSP и ЦАП. Хорошим примером являются дисплеи с разверткой видеоизображения, в которых сгенерированный в цифровой форме сигнал управляет видеоизображением или блоком RAMDAC (преобразователем массива пиксельных значений из цифровой в аналоговую форму).

Другой пример — это искусственно синтезируемые музыка и речь. В действительности, при генерации физических аналоговых сигналов с использованием только цифровых методов полагаются на информацию, предварительно полученную из источников подобных физических аналоговых сигналов. В системах отображения данные на дисплее должны донести соответствующую информацию оператору. При разработке звуковых систем задаются статистическими свойствами генерируемых звуков, которые были предварительно определены с помощью широкого использования методов ЦОС (источник звука, микрофон, предварительный усилитель, АЦП и т.д.).

Методы и технологии обработки сигналов

Сигналы могут быть обработаны с использованием аналоговых методов (аналоговой обработки сигналов, или ASP), цифровых методов (цифровой обработки сигналов, или DSP) или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов, или MSP). В некоторых случаях выбор методов ясен, в других случаях нет ясности в выборе и принятие окончательного решения основывается на определенных соображениях.

Что касается DSP, то главное отличие его от традиционного компьютерного анализа данных заключается в высокой скорости и эффективности выполнения сложных функций цифровой обработки, таких как фильтрация, анализ с использованием и сжатие данных в реальном масштабе времени.

Термин "комбинированная обработка сигналов" подразумевает, что системой выполняется и аналоговая, и цифровая обработка. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции.

Недавние успехи технологии создания микросхем с очень высокой степенью интеграции (VLSI) позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле. Сама природа ЦОС подразумевает, что эти функции могут быть выполнены в режиме реального масштаба времени.

Сравнение аналоговой и цифровой обработки сигналов

Сегодняшний инженер стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами.

Некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов как аналоговым так и цифровым методом. Цепи нормализации сигнала — это аналоговые процессоры, выполняющие такие функции как усиление, накопление (в измерительных и предварительных (буферных) усилителях), обнаружение сигнала на фоне шума (высокоточными усилителями синфазного сигнала, эквалайзерами и линейными приемниками), динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления) и фильтрация (пассивная или активная).

Несколько методов реализации процесса обработки сигналов показано на рисунке 1. В верхней области рисунка изображен чисто аналоговый подход. В остальных областях изображена реализация DSP. Обратите внимание, что, как только выбрана DSP технология, следующим решением должно быть определение местоположения АЦП в тракте обработки сигнала.

ОБРАБОТКА АНАЛОГОВЫХ И ЦИФРОВЫХ СИГНАЛОВ

Рисунок 1. Способы обработки сигналов

Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т.д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему.

При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП /ЦАП.

В сфере измерений, например, существуют 24-битные АЦП со встроенными программируемыми усилителями (PGA), которые позволяют оцифровывать полномасштабные мостовые сигналы 10 mV непосредственно, без последующей нормализации (например серия AD773x).

На голосовых и звуковых частотах распространены комплексные устройства кодирования-декодирования&nbp;— кодеки (Analog Front End, AFE), которые имеют встроенную в микросхему аналоговую схему, удовлетворяющую минимуму требований к внешним компонентам нормализации (AD1819B и AD73322).

Существуют также видео-кодеки (AFE) для таких задач, как обработка изображения с помощью ПЗС (CCD), и другие (например, серии AD9814, AD9816, и AD984X).

Пример реализации

В качестве примера использования DSP сравним аналоговый и цифровой фильтры низкой частоты (ФНЧ), каждый с частотой среза 1 кГц.

Цифровой фильтр реализован в виде типовой цифровой системы, показанной на рисунок 2. Обратите внимание, что в диаграмме принято несколько неявных допущений. Во -первых, чтобы точно обработать сигнал, принимается, что тракт АЦП /ЦАП обладает достаточными значениями частоты дискретизации, разрешающей способности и динамического диапазона. Во -вторых, для того, чтобы закончить все свои вычисления в пределах интервала дискретизации (1/f s), устройство ЦОС должно иметь достаточное быстродействие. В -третьих, на входе АЦП и выходе ЦАП сохраняется потребность в аналоговых фильтрах ограничения и восстановления спектра сигнала (anti-aliasing filter и anti-imaging filter), хотя требования к их производительности невелики. Приняв эти допущения, можно сравнить цифровой и аналоговый фильтры.




Рисунок 2. Структурная схема цифрового фильтра

Требуемая частота среза обоих фильтров — 1 кГц. Аналоговое преобразование реализуется фильтром Чебышева первого рода шестого порядка (характеризуется наличием пульсаций коэффициента передачи в полосе пропускания и отсутствием пульсаций вне полосы пропускания). Его характеристики представлены на рисунке 2. На практике этот фильтр может быть представлен тремя фильтрами второго порядка, каждый из которых построен на операционном усилителе и нескольких и конденсаторах. С помощью современных систем автоматизированного проектирования (САПР) фильтров создать фильтр шестого порядка достаточно просто, но чтобы удовлетворить техническим требованиям по неравномерности характеристики 0,5 дБ, требуется точный подбор компонентов.

Представленный же на рисунке 2 цифровой КИХ-фильтр со 129 коэффициентами имеет неравномерность характеристики всего 0,002 дБ в полосе пропускания, линейную фазовую характеристику и намного более крутой спад. На практике такие характеристики невозможно реализовать с использованием аналоговых методов. Другое очевидное преимущество схемы состоит в том, что цифровой фильтр не требует подбора компонентов и не подвержен дрейфу параметров, так как частота синхронизации фильтра стабилизирована кварцевым резонатором. Фильтр со 129 коэффициентами требует 129 операций умножения с накоплением (MAC) для вычисления выходного отсчёта. Эти вычисления должны быть закончены в пределах интервала дискретизации 1/fs, чтобы обеспечить работу в реальном масштабе времени. В этом примере частота дискретизации равна 10 кГц, поэтому для обработки достаточно 100 мкс, если не требуется производить существенных дополнительных вычислений. Семейство DSP ADSP-21xx может закончить весь процесс умножения с накоплением (и другие функции, необходимые для реализации фильтра) за один командный цикл. Поэтому фильтр со 129 коэффициентами требует быстродействия более 129/100 мкс = 1,3 миллиона операций с секунду (MIPS). Существующие DSP имеют намного большее быстродействие и, таким образом, не являются ограничивающим фактором для этих приложений. Быстродействие серии 16-разрядных ADSP-218x с фиксированной точкой достигает 75MIPS. В листинге 1 приведен ассемблерный код, реализующий фильтр на DSP процессорах семейства ADSP-21xx. Обратите внимание, что фактические строки исполняемого кода помечены стрелками; остальное — это комментарии.



Рисунок 3. аналогового и цифрового фильтров

Конечно, на практике имеется много других факторов, рассматриваемых при сравнительной оценке аналоговых и цифровых фильтров или аналоговых и цифровых методов обработки сигнала вообще. В современных системах обработки сигналов комбинируются аналоговые и цифровые методы реализации желаемой функции и используются преимущества лучших методов, как аналоговых, так и цифровых.

ПРОГРАММА НА АССЕМБЛЕРЕ:
FIR ФИЛЬТР ДЛЯ ADSP-21XX (ОДИНАРНАЯ ТОЧНОСТЬ)

MODULE fir_sub; { Подпрограмма КИХ фильтра Параметры вызова подпрограммы I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра L0 = Длина фильтра (N) L4 = Длина фильтра (N) M1,M5 = 1 CNTR = Длина фильтра - 1 (N-1) Возвращаемые значения MR1 = Результат суммирования (округлённый и ограниченный) I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра Изменяемые регистры MX0,MY0,MR Время работы (N - 1) + 6 cycles = N + 5 cycles Все коэффициенты записаны в формате 1.15 } .ENTRY fir; fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5) CNTR = N-1; DO convolution UNTIL CE; convolution: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5); MR=MR+MX0*MY0(RND); IF MV SAT MR; RTS; .ENDMOD; ОБРАБОТКА СИГНАЛОВ В РЕАЛЬНОМ ВРЕМЕНИ

  • Цифровая обработка сигналов;
    • Ширина спектра обрабатываемого сигнала ограничена частотой дискретизации АЦП/ЦАП
      • Помните о критерии Найквиста и теореме Котельникова
    • ограничен разрядностью АЦП /ЦАП
    • Производительность процессора DSP ограничивает объем обработки сигнала, так как:
      • Для работы в реальном масштабе времени все вычисления, производимые сигнальным процессором, должны быть закончены в течение интервала дискретизации, равного 1/f s
  • Не забывайте об аналоговой обработке сигнала
    • высокочастотной /радиочастотной фильтрации, модуляции, демодуляции
    • аналоговых ограничивающих и восстанавливающих спектр фильтрах (обычно ФНЧ) для АЦП и ЦАП
    • там, где диктуют здравый смысл и стоимость реализации

Литература:

Вместе со статьей "Виды сигналов" читают: