Как изготовить вихревой тепловой генератор потапова своими руками. Вихревые трубки. Схема, описание

28.02.2019

Готовый тепловой генератор.

В зависимости от типа устройства изменяется и методика его изготовления. Стоит ознакомиться с каждым типом прибора, изучить особенности производства, прежде чем браться за работу. Простой способ изготовить вихревую трубу Ранке своими руками – использовать готовые элементы. Для этого понадобится любой двигатель. При этом прибор большей мощности способен подогреть больше теплоносителя, что увеличит продуктивность системы.

Для успешного сооружения следует найти готовые решения. Создать вихревой теплогенератор своими руками, чертежи и схемы которого будут в наличии, можно без особых сложностей. Для проведения работ по сооружению понадобится следующий инструментарий:

  • болгарка;
  • железные уголки;
  • сварка;
  • дрель и набор из нескольких сверл;
  • фурнитура и набор ключей;
  • грунтовка, красящее вещество и кисточки.

Вихревой двигатель — это один из источников альтернативной энергии для отопления дома.

Стоит понимать, что роторные приборы издают достаточно сильный шум при работе. Но в сравнении с прочими устройствами они характеризуются большей производительностью. Чертежи и схемы для изготовления вихревого теплогенератора своими руками можно найти повсеместно. Стоит понимать, что работа будет выполнена успешно исключительно при полном соответствии технологии производства.

Установка насоса вихревого генератора теплоты и сооружение корпуса

Кожух данного устройства изготавливается в виде цилиндра, который должен закрываться со сторон каждой основы. На каждом боку расположены сквозные отверстия. Используя их, можно подключить вихревой теплогенератор своими руками к системе обогрева дома. Основная особенность такого изделия заключается с том, что внутри кожуха, возле входного отверстия устанавливается жиклер. Данное приспособления должно подбираться индивидуально для каждого отдельно взятого случая.

Схема вихревого двигателя.

Процесс производства включает в себя следующие пункты:

  • отрезание трубы необходимого размера (около 50-60 см);
  • нарезка резьбы;
  • изготовление пары колец из трубы того же диаметра с длиной примерно 50 мм;
  • приваривание крышек к местам, где не нарезалась резьба;
  • вырезание двух отверстий в центре каждой крышки (одно для подключения патрубка, второе – для жиклера);
  • сверление фаски рядом с жиклером для получения форсунки.

Установка насоса вихревого двигателя проводится после подбора агрегата необходимой мощности. При покупке стоит придерживаться двух правил. Первое – устройство должно быть центробежным. Второе – выбор будет целесообразным лишь в случае, когда устройство будет оптимально функционировать в паре с установленным электродвигателем.

Утепление вихревого двигателя

Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:

Готовый тепловой генератор.

  • стекловата;
  • минеральная вата;
  • базальтовая вата.

Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: « .

В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.

Подведение итогов

Если все правила изготовления конструкции были учтены, то вихревой генератор прослужит долгое время. Не стоит забывать, что от грамотной установки прибора тоже зависит многое в системе отопления. В любом случае изготовление такой конструкции из подручных средств обойдется дешевле приобретения готового приспособления. Однако для оптимального функционирования устройства следует ответственно подойти к процессам изготовления корпуса и обшивки тепловой изоляции.

Вашему вниманию и обсуждению представлен твердотопливный котел на угле, вобравший на мой взгляд все лучшие технологии прошлого и современности.

Данный котел сможет не только обогреть дом, но и вырабывать электроэнергию и пиролизный газ для бытового использования в плите итд. Е

Конечно, я не теплотехник, и не печник, но судя по тем моделям современных котлов, что есть в продаже, вспоминаю поговорку: «Ковчег построил любитель, профессионалы построили "Титаник "».

Предыстория.

Подбирая твердотопливный котел отопления, изучил почти всех производителей котлов для использования в частном доме и такое ощущение, что «современные» котлы выпускают в сараях причем с низкой эффективностью и из консервных банок! Толщина металла у основной массы продавцов составляет от 3 мм до максимум 6 мм, а в «гарантийных обязательствах написано: котел может служить до 7 лет, «при правильной эксплуатации». То есть вам не кто не гарантирует, что эта жестянка не прогорит раньше первого сезона эксплуатации!

Все это говорит о том, что производители котельного оборудования не заинтересованы в выпуске хороших и долговечных котлов. Когда изучаешь сколько такие котлы потребляют угля или дров удивляешь цифры фантастические от 3 до 10 кг. топлива в ЧАС!

В связи с удручающей ситуацией на рынке котлов, пришлось изучить опыт начиная от древности до наших дней. Требования которые хотелось бы видеть от СОВРЕМЕННОГО КОТЛА, не то что сейчас продают, из консервных банок с низким КПД.

На мой взгляд твердотопливный котел отопления должен отвечать следующим требованиям:

1) Простой и надежный

2) Энергонезависимый

3) Потреблять минимум топлива

4) Производить тепловую энергию

5) Производить Древесный газ (ПИРОЛЕЗНЫЙ) для подключения плиты и других источников потребления.

Для решения этих задач пришлось изучать опыт от древних Аркаимцев до современных котлов с циркулирующим кипящим слоем (которые почему не производят для домашнего использования)
Привожу план схему КОТЛА, разработанного мною, где применены следующие технологии:

1) Трубка Ранке. (на рисунке с права от котла) За основу взята технология котлов с циркулирующим кипящим слоем, что способствует более тщательному сгоранию топлива. За счет использования «трубы Ранке» происходит разделение вихревых воздушных потоков на горячий и холодный, это позволяет несгоревшие частички топлива возвращать обратно в топливную камеру, а более горячий воздушный поток поднимающийся вверх использовать для разогревания воды до состояния пара. Разогретый пар можно использовать для небольшой паровой электро турбины .

2) Сухая возгонка древесины. Технология получения и очищения ДРЕВЕСТНОГО ГАЗА (пиролизного) разработанная Петр Григорьевичем Соболевским в 1811 году для освещения улиц (термолампами) и отопления домов. Эта технология ПРОСТА и прекрасно себя зарекомендовала, с успехом применялась несколько десятилетий для освещения крупных городов России: Москва, Санкт- Петербург, итд.

Принцип действия сухой возгонки древесины понятен из этих картинок:

Принципиальная схема «термолампа»
конструкции П. Г. Соболевского (1811 г.):
1 – печь; 2 – поддувало или зольник; 3 – зольная решетка;
4 – дверцы печные; 5 – чугунный цилиндр; 6 – отверстие для загрузки
дров; 7 – пространство около цилиндра, через которое проходит пламя;
8 – дымовая труба; 9 – задвижка в трубе; 10 – конец цилиндра,
сообщенный с холодильником; 11 – холодильник; 12 – приемный сосуд
для кислоты и дегтя; 13 – сосуд, наполненный до половины водой;
14 – медная труба, пропускающая газ через воду из сосуда 12 в сосуд 13;
15 – кожаная трубка с краном, по которой очищенный газ поступает
в газгольдер; 16 – газгольдер; 17 – кожаная трубка, выводящая газ
к лампам; 18 – линия, показывающая, до какой высоты может
подняться колокол газгольдера; 19 – отводная трубка для отвода
излишнего газа.

1) Создание реактивной тяги в печи .

а) Смысл технологии реактивной тяги в печи сводится к подводу охлажденного воздуха в зону горения. Для этого воздух в поддувало через трубу подводят из колодца или охлаждают прогоняя через более холодные слои земли, это способствует более интенсивному и жаркому горению топлива.

б) Создание вихревых потоков. В поддувало печи подводится воздух не с одной стороны, с двух противоположных сторон - это создает эффект «сквозняка» собственно - это и есть вихревой поток. Этот метод применяли в древнем городе Аркаиме.

В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.

Рис. 2.3.1. Схема вихревой трубы.

Как известно, в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии

.

Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом

,

где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.

Рис. 2.3.2. Температура газа на выходе из ВТ.

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.(195).

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

Эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.

Назначение вихревого теплогенератора Потапова (ВТГ), сделанного своими руками, состоит в том, чтобы получить тепло только при помощи электродвигателя и насоса. В основном это устройство используют как экономичный нагреватель.

Схема устройства вихревой теплосистемы.

Так как нет исследований по определению параметров изделия в зависимости от мощности насоса, то будут освещены примерные размеры.

Проще всего делать вихревой теплогенератор из стандартных деталей. Для этого подойдет любой электродвигатель. Чем он будет мощней, тем больший объем воды нагреет до заданной температуры.

Главное это двигатель

Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.

Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.

Чертеж вихревого теплогенератора.

Список инструментов и материалов:

  • угловая шлифовальная машинка;
  • сварочный аппарат;
  • электродрель;
  • набор сверл;
  • рожковые или накидные ключи на 12 и на 13;
  • болты, гайки, шайбы;
  • металлический уголок;
  • грунтовка, краска, кисть малярная.
  1. Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант — сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
  2. Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
  3. Сделайте покраску рамы.
  4. Просверлите отверстия в каркасе под болты и установите двигатель.

Установка насоса

Теперь надо будет подобрать водяной насос. Сейчас в специализированных магазинах можно приобрести агрегат любой модификации и мощности. На что надо обратить внимание?

  1. Насос должен быть центробежным.
  2. Ваш двигатель сможет его раскрутить.

Установите на раме насос, если надо будет сделать еще поперечины, то изготовьте их либо из уголка, либо из полосового железа такой же толщины, как и уголок. Соединительную муфту вряд ли возможно сделать без токарного станка. Поэтому придется ее где-то заказывать.

Схема гидровихревого теплогенератора.

Вихревой теплогенератор Потапова состоит из корпуса, сделанного в виде закрытого цилиндра. На его концах должны быть сквозные отверстия и патрубки для присоединения к системе отопления. Секрет конструкции находится внутри цилиндра. За входным отверстием должен располагаться жиклер. Его отверстие подбирается для данного устройства индивидуально, но желательно, чтобы оно было в два раза меньше четвертой части диаметра корпуса трубы. Если делать меньше, то насос не сможет пропускать воду через это отверстие и начнет сам нагреваться. Кроме того, начнут интенсивно за счет явления кавитации разрушаться внутренние детали.

Инструменты: угловая шлифовальная машинка или ножовка по металлу, сварочный аппарат, электродрель, разводной ключ.

Материалы: толстая металлическая труба, электроды, сверла, 2 патрубка с резьбой, соединительные муфты.

  1. Отрежьте кусок толстой трубы диаметром 100 мм и длиной 500-600 мм. Сделайте на ней внешнюю проточку примерно 20-25 мм и в половину толщины трубы. Нарежьте резьбу.
  2. Сделайте из такого же диаметра трубы два кольца длиной 50 мм. Нарежьте внутреннюю резьбу с одной стороны каждого полукольца.
  3. Из такой же толщины плоского металла, что и труба, сделайте крышки и приварите их с той стороны колец, где нет резьбы.
  4. Сделайте в крышках центральное отверстие: у одной по диаметру жиклера, а у другой по диаметру патрубка. С внутренней стороны крышки, где стоит жиклер, сверлом большего диаметра сделайте фаску. В результате должна получиться форсунка.
  5. Подключите теплогенератор к системе. Патрубок, где стоит форсунка, присоедините к насосу в отверстие, из которого вода подается под давлением. Ко второму патрубку подсоедините вход системы отопления. Выход из системы соедините с входом насоса.

Вода под давлением, которое создаст насос, будет проходить через форсунку вихревого теплогенератора, который вы делаете своими руками. В камере она начнет нагреваться за счет интенсивного перемешивания. Потом ее подадите в систему для обогрева. Чтобы регулировать температуру, поставьте за патрубком шаровое запирающее устройство. Прикройте его, и вихревой теплогенератор будет дольше гонять воду внутри корпуса, а значит, температура в нем начнет подниматься. Примерно так работает этот нагреватель.

Пути повышения производительности

Схема теплового насоса.

В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.

Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.

Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.

  1. Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
  2. Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
  3. Сделайте крышки с одной и другой стороны.
  4. Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
  5. Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.

На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.

Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.

Утепление генератора

Схема подключения теплогенератора к системе отопления.

Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.

Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.

  1. Соедините его при помощи замка, который используют жестянщики для водосточных труб.
  2. Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
  3. Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
  4. Поместите устройство в кожух, закройте крышками.

Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).

Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.

Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.

Схема стационарного теплогенератора.

Инструменты: сварочный аппарат, угловая шлифовальная машинка.

Материалы: листовой металл или полосовое железо, толстостенная труба.

Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.

  1. Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
  2. Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
  3. Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.

Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.

Схема устройства тепловой пушки.

  1. Обязательно защитите при помощи окрашивания всех поверхностей вихревой теплогенератор Потапова.
  2. Внутренние его части во время работы будут находиться в очень агрессивной среде, вызванной процессами кавитации. Поэтому и корпус, и все, что в нем находится, постарайтесь сделать из толстого материала. Не экономьте на железе.
  3. Сделайте несколько вариантов крышек с разными входными отверстиями. Потом проще будет подбирать их диаметр, чтобы получить высокую производительность.
  4. Это же относится и к гасителю колебаний. Его также можно видоизменять.

Соберите небольшой лабораторный стенд, где будете обкатывать все характеристики. Для этого не подключайте потребители, а закольцуйте трубопровод на генератор. Это упростит его испытание и подбор необходимых параметров. Так как сложные приборы по определению коэффициента полезной деятельности в домашних условиях вряд ли можно найти, то предлагается следующий тест.

Включите вихревой теплогенератор и засеките время, когда он разогреет воду до определенной температуры. Градусник лучше иметь электронный, он точнее. Затем внесите изменения в конструкцию и снова проведите опыт, следя за повышением температуры. Чем сильнее вода будет нагреваться за одно и то же время, тем больше предпочтений надо будет отдавать окончательному варианту установленного усовершенствования в конструкции.

Откуда «растут ноги» у вихревого смесителя

Демон Максвелла

Физик Максвелл предложил миру интересную идею. Он провел такой мысленный эксперимент. Пусть имеется два сосуда с комнатным воздухом, соединенных друг с другом. Как известно, в обоих сосудах есть быстрые («горячие») молекулы, а есть менее подвижные холодные молекулы - все, как и описано в уравнении Максвелла. Предположим, что в месте соединения сосудов есть плотная дверка, у которой стоит сторож-швейцар. Сторож-швейцар пропускает в один избранный сосуд только быстрые молекулы, а обратно выпускает только медленные. Немного поработав, этот швейцар добьется того, что из избранного сосуда сбегут все медленные – холодные - молекулы, а соберутся быстрые - горячие. Процесс приведет к нагреванию одного сосуда и охлаждению другого.

(рисунок не мой – нашел в интернете)
Этого сторожа-швейцара окрестили физики демоном Максвелла и доказали невозможность его существования на основе постулата второго закона термодинамики. Этот постулат гласит о том, что мера энтропии (хаоса) может только возрастать (быть больше нуля) в закрытой замкнутой системе.

Трубка Ранка-Хильша

Потом появился Ранк с очень странным приборчиком – небольшой трубочкой, с одной стороны, которой выходил холодный воздух, а с другой – горячий. Никаких подогревателей или охладителей у трубки Ранка не было. А роль демона Максвелла играл обычный воздух, который не стоял в дверях как швейцар, а подавался внутрь с некоторой скоростью в трубку по касательной. Ранк не понимал, как его трубка работает, а другие ученые, похоже и вовсе не приняли странного изобретателя, так как факт существования такой трубки разрушал устоявшееся в науке представление. Хильш смог как-то улучшить работу этого приспособления, который сегодня известен как трубка Ранка-Хильша.


Рис. Схема трубки Ранка-Хильша. Голубая стрелка – подача воздуха по касательной. Темно-синяя стрелка – выход холодного воздуха. Красная стрелка – выход горячего воздуха.

Разница температур на выходе между двумя концами трубки Ранка может достигать 80 градусов при комнатной температуре и зависит от скорости подачи воздуха, как и от геометрии трубки.
Очень скоро выяснился экспериментальный факт: внутри трубки Ранка воздух ведет себя не как квазитвердое тело, как это думали. В трубке Ранка поток разделяется на два слоя, вращающиеся в разном направлении. Слой снаружи вращается в ту сторону, куда направлен воздух первоисточник. Слой по центру вращается в противоположную сторону. Что за чудеса!

С какой это стати и перепугу?...
Попробуем порисовать...
Нарисуем опять разрез трубки Ранка. По направлению голубой стрелки подаем воздух. Тогда в том месте, где нарисован синий круг у нас появится зона пониженного давления. В сторону этой зоны будет отклоняться поток - появится завихрение.

Ну у меня это так получилось нарисовать для одного вихря, ...пусть и неказисто...
Если объединить вихри в полный цикл, то картина может выглядеть так, как на рисунке Шауберга (которая рисовалась немецким ученым не для случая трубки Ранка). Синей стрелкой я нарисовал подачу воздуха-источника. На рисунке видно, как вихрь, пробегающий по контуру трубки, усиливает вращение во внешнем слое и закручивает поток в центре в противоположном направлении.

Рисунок Шауберга с моими цветными дополнениями

Есть предположение, что аналогичная схема присутствует в природном явлении торнадо. Во всяком случае, в центре торнадо, отмечают пониженную температуру, подобно тому, как это мы видим в трубке Ранка и вращается шнур торнадо в противоположную сторону от вращения периферии. Если это так, то нам должен быть интересен факт заниженного давления в центре торнадо. Это разряжение затягивает в себя как в воронку перефирию смерча.

Ведерко Ньютона

Похожие картинки получили датчане во время экспериментов с ведерком Ньютона (цилиндр у которого вращается дно, а стенки неподвижны).


При достаточно большой скорости вращения донышка на поверхности воды возникали вихревые образования. Получали вихревые образования в виде вращающихся многоугольников (от треугольников до шестиугольников). Когда ученые заменили воду этиленгликолем, в результате вращения на поверхности жидкости стали образовываться деформации треугольной формы, а на углах многоугольников образовывались вихри. Отчего так происходит – не известно, объяснить результаты сами экспериментаторы пока не могут. Но можно только отметить, что среда расслоилась и по центру появилось устойчивое вихревое образование – воронка правильной, чаще всего, пятиугольной формы.

Теоретические и практические предпосылки

Теория горения и взрыва выявила некоторые интересные закономерности.

1.Академик Н.Н.Семенов в 1926-1927 гг. создал тепловую теорию самовоспламенения горючих газов. При температурах, лежащих ниже температуры самовоспламенения, в газе с небольшой скоростью идёт химическая реакция, а теплоотвод через стенку в наружную среду компенсирует теплоприход от реакции. С увеличением температуры скорость реакции растёт и создаются условия, когда теплоотвод не успевает компенсировать теплоприход и развивается тепловая лавина.

2.«Опытные данные и теоретическое рассмотрение свидетельствуют о том, что при распространении пламени реакция идет в каждый момент времени в сравнительно (по сравнению с размерами камер сгорания) тонком слое - зоне реакции. В непосредственной близости от зоны реакции, также в тонком слое, происходит разогрев несгоревшей смеси. Поэтому в первом приближении распространение пламени можно представить себе так: имеются две области - несгоревшего газа и продуктов реакции, разделенные поверхностью горения, толщиной которой можно пренебрегать и рассматривать ее как геометрическую поверхность, движущуюся относительно газа с известной скоростью - нормальной скоростью распространения пламени». Зельдович Я.Б на примере реакции водорода с кислородом обнаружил три предела воспламенения, которые проиллюстрировал в виде диаграммы «давление - температура»

Рис 1.0
«Пределы воспламенения стехиометрической смеси водорода с кислородом приведены на рис. 1.0. Если начальным давлению и температуре смеси отвечает точка, лежащая справа от кривой ABCD4 то происходит воспламенение; участок AB соответствует первому, ВС - второму и CD - третьему пределам воспламенения. Область между первым и вторым пределами называют полуостровом воспламенения.»

3. «Достаточно быстрое сгорание, при котором скорость пламени достигает сотен м/сек, происходит при турбулизации газовой смеси и соответственно, при турбулизации фронта пламени. Турбулизация вызывает значительное разрастание фронта пламени, ускорение теплообмена между продуктами сгорания и исходной смесью и, соответственно, горения.»

4. Академик М. А. Стырикович описал такие установи для сжигания угля


«В топке одновременно идут три взаимосвязанных процесса: гидродинамический процесс подачи со значительными скоростями (часто в закрученном виде) потоков воздуха и угольной пыли, процесс воспламенения. Обычно горелки располагаются на двух противоположных стенах топочной камеры в несколько ярусов (см. рис. 1), так что приходится учитывать и взаимодействие отдельных горелок между собой. При таком их расположении очень трудно обеспечить равномерность температуры по всему громадному сечению топки, а любая неравномерность может привести к шлакованию ширм или конвективных поверхностей. Более равномерное распределение температуры достигается при размещении горелок тангенциально по углам топки - так, что они создают в ней общий закрученный вихрь (рис. 2). Здесь уже не только каждая отдельная горелка порождает вихревой поток, но и вся совокупность горелок образует единый вихрь. Очевидно, что такую сложную геометрию потока рассчитать и реализовать весьма непросто»

5. широкое распространение на нефтепромыслах нашли вихревые излучатели (генераторы волн давления). Внешне генератор похож на трубку Ранка, но в отличие от трубки Ранка у него нет обратного выхода, а прямой выход открытый


"Генератор представляет собой корпус с цилиндрической камерой (камерой завихрения), с тангенциальным каналом (одним или несколькими) для подачи рабочей жидкости и соплом для выхода рабочей жидкости. Генератор работает следующим образом . При подаче жидкости через тангенциальное отверстие 2 диаметром d (см. рис. 1.3) внутри камеры завихрения 3 и выходного сопла 4 генератора образуется система двух закрученных потоков. По периферии камеры движется так называемый первичный вихрь (I), имеющий в попе- речном сечении форму кольца с наружным радиусом R = D/2 и внутренним rm. Этот поток состоит из рабочей жидкости, подаваемой в генератор. Приосевую область вихревой камеры занимает вторичный вихрь (II), вращающийся как квазитвёрдое тело. Он образуется вследствие вовлечения в движение первичным потоком жидкости из окружающей среды, в которую происходит истечение жидкости из генератора. Опыт показывает, что в случае незатопленного истечения струи жидкости (например, при истечении её в газообразную среду) движение устойчиво и пульсации давления и скорости в потоке отсутствуют. Если же истечение закрученной струи затопленное, т.е. рабочая жидкость в вихревой камере и вещество окружающей среды имеют одну и ту же физическую природу, то в потоке генерируются регулярные пульсации давления, частота и амплитуда которых зависит от скорости истечения и геометрических параметров камеры завихрения, её конструкции и формы сопла. В окружающей среде пульсации давления фиксируются как звук дискретного тона и значительной интенсивности."
"Причиной звуковых колебаний является прецессионное вращательное движение вторичного вихря"

Вихревой шнур
В печах с ВС небольшого размера и формы пятиугольника или окружности в плане можно наблюдать зарождение вихревого горящего шнура по центру, вращающегося, как и центральный поток в трубке Ранка в противоположную от направления подачи воздуха сторону. Но это бывает при большой скорости движения газов по трубе и при наличии не более одного-двух щелевых сопел, обеспечивающих большие скорости втекания в ВС. Несколько слов об этом.

Существенную роль в ВС играет степень турбулентности, которую можно оценить числом Рейнольдса.
Re=v*L/n
Где
Re – безразмерное число Рейнольдса,
v- скорость потока
L- характерный линейный размер
n - кинетическая вязкость
Когда Re > 2320 движение идет с образованием завихрений.
Если принять n= 0.0015м2\с для воздуха при Т=270К
L=0.23м, то получим скорость при которой начинается турбулентность
v=0.15м\с.
Если скорость подачи через вихревое сопло-щель > 0.15м\с при данных допущениях, то ламинарный поток начинает переходить в турбулентный. Этого, правда, еще недостаточно, чтоб активно проявился вихревой эффект. Для этого, поток должен обладать достаточной скоростью, чтобы образовался вихрь диаметром сравнимым с радиусом ВС (за радиус ВС принимаем наименьшее расстояние от центра ВС до внутренней поверхности стенки ВС).
Сделаем небольшие оценки.
Согласно шкале Фудзиты-Пирсона, минимально возможным вихрем в природе являются вихри с линейной скоростью v при вращении воздуха в воронке порядка 18 м\с. Давайте рассмотрим такую схему:

Рис. расположение ВС для появления вихревого шнура, рисунок в плане. 1 – топливник, 2 –вихревое сопло, 3 – ВС

Примем размеры топливника 250 х 500 х 600.
Вихревую щель в узком месте возьмем 10 мм, высотой 124 мм.
Пусть имеется у печи дымовая труба цилиндрической формы d= 120.
Оценим скорость в трубе обычным диапазоном 2-8м\с.
Тогда скорость в узком месте сопла из уравнения струи будет оценена в диапазоне:
Vmin= 2*3.14*sqw(60) / (124*10) = 18 м\с
Vmax = 72 м\с
Полученный диапазон 18-72 м\с соответствует категориям F0- F3 по шкале Фудзиты-Пирсона.
Реальные турбулентности и трение в сопле могут занизить линейную скорость, но тем не менее у нас есть все теоретические предпосылки наблюдать в ВС такой конструкции небольшое торнадо с горящим шнуром по центру с соответствующими звуковыми эффектами.

Задачи получить вихревой шнур в печи не стоит. И, естественно, торнадо в бытовой печи это уже излишне, хотя и зрелищно.

Нам интересен сам факт перемешивания, турбулентности и появления зон с другим давлением и температурой, что заставляет пройти реакцию горения максимально полно.

воплощение
Все эти размышления навели на мысль изначально сделать Вихревой Смеситель (ВС) пятиугольной формы.
ВС в этой конструкции использовалась в камере дожига (КД).

Но эта форма для ВС совсем не обязательна, здесь может быть и квадрат и прямоугольник, или окружность в плане.
На сегодняшний день опробован ВС в обычном топливнике прямоугольной формы с вихревыми щелями по краям.


ВС в составе КД может находится в центре топливника.

Рис. В этом экзотическом варианте предполагается наличие загрузочных дверок по сторонам, а ВС начинается ниже топливника (с подачей воздуха через одну вихревую щель

Также можно использовать ВС не только для КД, но и для топливника.

Рис. здесь топливо закладывается в ВС, загрузочная дверка предполагается сверху или сбоку.

Также легко ВС применяется в КС и для трубы.


Рис. Развязка перекресток для случая встречных четырех потоков. Вид в плане, труба в центре

Одно существенное замечание.
В ВС не все равно в какую сторону закручивается вихрь – это необходимо учитывать при проектировании вихревых щелей сопел. Правый винт и левый винт не равнозначны здесь и газовая смесь ведет себя совершенно по-разному. Это свойство присуще всем вихрям Бенара (или правильно назвать Бенарда, но в России почему-то Benard превратился в Бенара).

1 случай.
Если закручивать поток с внешней стороны (стороны стенки) вихревыми соплами правым винтом (смотреть если сверху, то движение против часовой стрелки), то тогда центральный поток, вращающийся по стрелке будет подниматься вверх, а на периферии опускаться вниз.

Рис. 1 случай

2 случай.
Если закручивать периферию левым винтом – по часовой стрелке, то подниматься будет внешний слой, а средний, вращаясь против часовой стрелки, будет опускаться.

Рис. 2 случай

Какая разница?
В нашей вселенной преобладает правый винт и это самая устойчивая в природе система – от структуры атома и молекулы ДНК, до вихря торнадо и скоплений звезд. Встречающиеся природные вихри Бенара, похоже, все правовинтовые.
По этой причине, когда я конструировал первые ВС, делал их с правой закруткой. Но к чему это приводит? Внутренний средний слой при таком способе начинает подниматься, а внешний – опускаться, иногда это даже приводило к тому, что дым мог отмахнуть через дверку - если ВС в топливнике. Чтоб этого не происходило, приходится идти на ухищрение и делать воздушный замок у проема- слева от дверки межфутеровочное пространство не заполняется и воздух подается на дверку.
Если реализовывать 2 способ в ВС, то преферийный слой поднимается, а центральный опускается и тогда нет никакой отмашки без всяких фокусов. И этот способ интересен еще одной особенностью - правовинтовой вихрь Бенара менее устойчив и он разрушается в зоне перехода в КС, отдавая свою энергию потоку.

ЛИТЕРАТУРА

1 Зельдович Я.Б. , Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва - М.: Наука, 1980
2. М.А.Стырикович. Проблемы сжигания твердого топлива в большой энергетике
3. В.И.Говоров, В.М.Плотников, Е.В.Каратай – г.Темиртау: КГИУ, 2007 г. Теоретические основы горения и взрыва (7.4. Факторы ускорения горения)
4. Н.Н. Семёнов. Цепные реакции. Л.: ОНТИ, 1934; 2-е изд. М.: Наука, 1986;
5.Неволин В.Г. Опыт применения звукового воздействия в практике нефтедобычи Пермского края. – Пермь, 2008.