Оптимальная политика замены оборудования. Улучшение организации ремонта - большая производственно-технологическая проблема. Затраты на ремонт весьма велики, поэтому необходимо ускорять и удешевлять ремонт при широком внедрении мероприятий по совершенствов

08.03.2019

Важной экономической проблемой является своевременное обновление оборудования: автомобилей, станков, телевизоров и т. п. Старение оборудования включает физический и моральный износ, в результате чего растут затраты на ремонт и обслуживание, снижается производительность труда и ликвидная стоимость. Задача заключается в определении оптимальных сроков замены старого оборудования. Критерием оптимальности являются доход от эксплуатации оборудования (задача максимизации) либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Предположим, что планируется эксплуатация оборудования в течение некоторого периода времени продолжительностью N лет. Оборудование имеет тенденцию с течением времени стареть и приносить все меньший доход R (T ) (T – возраст оборудования). При этом есть возможность в начале любого года продать устаревшее оборудование за цену S (T ) , которая также зависит от возраста T , и купить новое оборудование за цену P . Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, определенный в годах. Требуется найти оптимальный план замены оборудования с тем, чтобы суммарный доход за все N лет был максимальным, учитывая, что к началу эксплуатации возраст оборудования составлял T 0 лет.

Исходными данными в задаче являются доход r(t) от эксплуатации в течение одного года оборудования возраста t лет, остаточная стоимость S(t), цена нового оборудования P и начальный возраст оборудования T 0 .

Таблица 26

S (N )

При составлении динамической модели выбора оптимальной стратегии обновления оборудования процесс замены рассматривается как N -шаговый, т. е. период эксплуатации разбивается на N -шагов.

Выберем в качестве шага оптимизацию плана замены оборудования с K -го по N -й годы.

Очевидно, что доход от эксплуатации оборудования за эти годы будет зависеть от возраста оборудования к началу рассматриваемого шага, т. е. K -го года.

Поскольку процесс оптимизации ведется с последнего шага (K = N ), то на K -м шаге неизвестно, в какие годы с первого по (K – 1 )-й должна осуществляться замена и соответственно неизвестен возраст оборудования к началу K -го года. Возраст оборудования, который определяет состояние системы, обозначим T . На величину T накладывается следующее ограничение:

Выражение (*) свидетельствует о том, что T не может превышать возраст оборудования за (K – 1 )-й год его эксплуатации с учетом возраста к началу первого года, который составляет T 0 лет; и не может быть меньше единицы (этот возраст оборудование будет иметь к началу K -го года, если замена произошла в начале предыдущего (K – 1 )-го года).

Таким образом, переменная T в данной задаче является переменной состояния системы на K -м шаге.

Переменной управления на K -м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (C) или заменить (З) оборудование в начале K -го года:

Функцию Беллмана Fk (T ) определяют как максимально возможный доход от эксплуатации оборудования за годы с K -го по N -й, если к началу K -го возраст оборудования составлял T лет. Применяя то или иное управление, система переходит в новое состояние. Так, например, если в начале K -го года оборудование сохраняется, то к началу (K + 1 )-го года его возраст увеличится на единицу (состояние системы станет T +1 ), в случае замены старого оборудования новое достигнет к началу (K + 1 )-го года возраста TI = 1 год.

На этой основе можно записать уравнение, которое позволяет рекуррентно вычислить функцию Беллмана, опираясь на результаты предыдущего шага. Для каждого варианта управления доход определяется как сумма двух слагаемых – непосредственного результата управления и его последствий.

Если в начале каждого года сохраняется оборудование, возраст которого T лет, то доход за этот год составит R (T ) . К началу (K + 1 )-го года возраст оборудования достигнет (T + 1 ) и максимально возможный доход за оставшиеся годы (с (K + 1 )-го по N -й) составит Fk +1 (T +1) . Если в начале K -го года принято о замене оборудования, то продается старое оборудование возраста T лет по цене S (T ) , приобретается новое за P единиц, а его эксплуатация в течение K -го года нового оборудования принесет прибыль R (0) . К началу следующего года возраст оборудования составит 1 год и за все оставшиеся годы с (K + 1 )-го по N -й максимально возможный доход будет Fk +1 (1) . Из двух возможных вариантов управления выбирается тот, который приносит максимальный доход. Таким образом, уравнение Беллмана на каждом шаге управления имеет вид

(31)

Функция Fk (T ) вычисляется на каждом шаге управления для всех . Управление, при котором достигается максимум дохода, является оптимальным.

Для первого шага условной оптимизации при k = n функция представляет собой доход за последний n-й год:

(32)

Значения функции Fn (T ) , определяемые Fn -1 (T ), Fn -2 (T ) вплоть до F 1 (T ). F 1 (T 0 ) представляют собой возможные доходы за все годы. Максимум дохода достигается при некотором управлении, применяя которое на первом году, мы определяем возраст оборудования к началу второго года. Для данного возраста оборудования выбирается управление, при котором достигается максимум дохода за годы со второго по N -й и т. д. В результате на этапе безусловной оптимизации определяются годы, в начале которых следует произвести замену оборудования.

Пример 74. Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r(t) и остаточная стоимость S(t) в зависимости от возраста заданы табл. 27, стоимость нового оборудования равна P = 13, а возраст оборудования к началу эксплуатационного периода составлял 1 год.

Таблица 27

S (T )

. 1 этап. Условная оптимизация.

1-й шаг. K = 6 . Для первого шага возможные состояния системы t = 1, 2, …, 6. Функциональное управление имеет вид (31).

2-й шаг. K = 5 . Для второго шага возможные состояния системы t = 1, 2, …, 5. Функциональное уравнение имеет вид

3-й шаг. K = 4 .

4-й шаг. K = 3 .

5-й шаг. K = 2 .

6-й шаг. K = 1 .

Результаты вычислений Беллмана Fk (T ) приведены в следующей таблице, в которой K – год эксплуатации, T – возраст оборудования.

Таблица 28

В табл. 28 выделено серым значение функции, соответствующее состоянию (З) - замена оборудования.

2-й этап. Безусловная оптимизация.

Безусловная оптимизация начинается с шага при K = 1 . Максимально возможный доход от эксплуатации оборудования за годы с 1-го по 6-й составляет F 1 (1) = 37 . Этот оптимальный выигрыш достигается, если на первом году не производить замены оборудования. Тогда к началу второго года возраст оборудования увеличится на единицу и составит: T 2 = T 1 + 1 = 1 + 1 = 2 . Безусловно, оптимальное управление при K =2 , Х2(2) = С , т. е. максимум дохода за годы со 2-го по 6-й достигается, если оборудование не заменяется.

К началу третьего года при k=3 возраст оборудования станет: T 3 = T 2 + 1 = 3. Безусловное оптимальное управление Х3(3) = З , т. е. для получения максимума прибыли за оставшиеся годы необходимо провести замену оборудования.

К началу четвертого года при K =4 возраст оборудования станет равен T 4 =1 . Безусловное оптимальное управление Х4(1) = С .

Таким образом, за 6 лет эксплуатации оборудования замену надо произвести один раз – в начале третьего года эксплуатации.

Динамическое программирование

Динамическое программирование – один из разделов оптимального программирования, в котором процесс принятия и управления может быть разбит на отдельные этапы.

Экономический процесс является управляемым, если можно влиять на ход его развития. Под управлением понимается совокупность решений, принимаемых на каждом этапе для влияния на ход развития процесса. Например, выпуск продукции предприятием – управляемый процесс. Совокупность решений, принимаемых в начале года по обеспечению предприятия сырьём, замене оборудования, финансированию и т. д., является управлением. Необходимо организовать выпуск продукции так, чтобы принятые решения на отдельных этапах способствовали получению максимально возможного объёма продукции или прибыли.

Одним из основных методов динамического программирования является метод рекуррентных соотношений, который основывается на использовании принципа оптимальности, разработанного американским математиком Беллманом. Принцип состоит в том, что, каковы бы ни были начальное состояние на любом шаге и управление, выбранное на этом шаге, последующие управления должны выбираться оптимальными относительно состояния, к которому придёт система в конце данного шага. Использование данного принципа гарантирует, что управление, выбранное на любом шаге, лучше с точки зрения процесса в целом.

В некоторых задачах, решаемых методом динамического программирования, процесс управления разбивается на шаги. При распределении на несколько лет ресурсов деятельности предприятия шагом считается временной период; при распределении средств между предприятиями – номер очередного предприятия.

Одной из важнейших экономических проблем является определение оптимальной стратегии в замене старых станков, агрегатов, машин на новые.

Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты по выпуску продукции на старом оборудовании, увеличиваются затраты на ремонт и обслуживание, снижаются производительность и ликвидная стоимость.

Вполне возможно, что старое оборудование выгоднее продать, заменить новым, чем эксплуатировать его; причём его можно заменить новым оборудованием того же вида или новым, более совершенным.

Оптимальная стратегия замены оборудования состоит в определении оптимальных сроков замены. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования, которую следует оптимизировать, или суммарные затраты на эксплуатацию в течение рассматриваемого промежутка времени, подлежащие минимизации.

Будем использовать обозначения:

r(t) – стоимость продукции, производимой за один год на единице оборудования возраста t лет;



u(t) – ежегодные затраты на обслуживание оборудования возраста t лет;

s(t) – остаточная стоимость оборудования возраста t лет;

Р – покупная цена оборудования.

Рассмотрим период N лет, в пределах которого требуется определить оптимальный план замены оборудования.

Обозначим через f N (t) максимальный доход, получаемый от оборудования возраста t лет за оставшиеся N лет цикла использования оборудования при условии оптимальной стратегии.

Возраст оборудования отсчитывается в направлении течения процесса. Так, t = 0 соответствует случаю использования нового оборудования. Временные же стадии процесса нумеруются в обратном направлении по отношению к ходу процесса. Например, N = 1 относится к одной временной стадии, остающейся до завершения процесса.

На каждом этапе N -стадийного процесса должно быть принято решение о сохранении или замене оборудования. Выбранный вариант должен обеспечивать получение максимальной прибыли.

Уравнения, помогающие выбрать оптимальное решение, имеют вид:

Первое уравнение описывает N -стадийный процесс, а второе – одностадийный. Оба уравнения состоят из двух частей: верхняя строка определяет доход, получаемый при сохранении оборудования; нижняя – доход, получаемый при замене оборудования и продолжении процесса работы на новом оборудовании.

В первом уравнении функция r(t) - u(t) есть разность между стоимостью произведённой продукции и эксплуатационными издержками на N – й стадии процесса.

Функция f N -1 (t+1) характеризует суммарную прибыль от (N - 1) оставшихся стадий для оборудования, возраст которого в начале осуществления этих стадий составляет (t + 1) лет.

Нижняя строка уравнения 1 характеризуется следующим образом: функция s(t) – P представляет чистые издержки по замене оборудования, возраст которого t лет.

Функция r (0) выражает доход, получаемый от нового оборудования возраста 0 лет. Предполагается, что переход от работы на оборудовании возраста t лет к работе на новом оборудовании совершается мгновенно, т. е. период замены старого оборудования и переход на работу на новом оборудовании укладываются в одну и ту же стадию.

Последняя функция f N -1 (1) в первом уравнении представляет собой доход от оставшихся N – 1 стадий, до начала осуществления которых возраст оборудования составляет один год.

В уравнении для одностадийного процесса нет слагаемого вида f 0 (t + 1), так как N принимает значения 1, 2, …, N . Равенство f 0 (t ) = 0 следует из определения функции f N (t).

Рассмотренные уравнения являются рекуррентными соотношениями, которые позволяют определить величину f N (t) в зависимости от f N -1 (t+1) . Данные уравнения показывают, что при переходе от одной стадии процесса к следующей возраст оборудования увеличивается с t до (t +1) лет, а число оставшихся стадий уменьшается с N до (N – 1).

Уравнения позволяют оценить варианты замены и сохранения оборудования, с тем, чтобы принять тот из них, который предполагает больший доход. Эти соотношения позволяют выбрать линию поведения при решении вопроса о сохранении и замене оборудования, а также определить прибыль, получаемую при принятии каждого из этих решений.

Пример. Р = 10, S(t) = 0, f(t) = r(t) - u(t) , представленных в таблице.

t
f(t)

РЕШЕНИЕ. Запишем уравнения в следующем виде:

.

…………………………………………………

…………………………………………………

Вычисления продолжаются до тех пор, пока не будет выполнено условие f 1 (1) > f 2 (2), т. е. в данный момент оборудование необходимо заменить, так как величина прибыли, получаемая в результате замены оборудования, больше, чем в случае использования старого. Результаты расчётов помещаются в таблицу, момент замены отмечается звёздочкой, после чего дальнейшие вычисления по строке прекращаются.

t f N (t)
N N- 1
f 1 (t)
f 2 (t) 9*
f 3 (t) 17 *
f 4 (t) 24*
f 5 (t) 30*
f 6 (t) 35*
f 7 (t) 41*
f 8 (t) 48*
f 9 (t) 54*
f 10 (t) 60*
f 11 (t) 65*
f 12 (t) 72*

По результатам вычислений и по линии, разграничивающей области решений сохранения и замены оборудования, находим оптимальный цикл замены оборудования. Для данной задачи он составляет 4 года.

Ответ. Для получения максимальной прибыли от использования оборудования в двенадцатиэтапном процессе оптимальный цикл состоит в замене оборудования через каждые 4 года.


Задачи для групповой работы на занятии по теме «Динамическое программирование»

1. К началу рассматриваемого периода на предприятии установлено новое оборудование. Зависимость производительности этого оборудования от времени его работы, а также затраты на содержание и ремонт при различном времени его использования приведены в таблице.

Известно, что затраты, связанные с приобретением и установкой нового оборудования составляют 40 млн. р., а заменяемое оборудование списывается. Составить такой план замены оборудования в течение пяти лет, при котором общий доход за данный период времени максимален.

2. К началу анализируемого периода на предприятии установлено новое оборудование.

Определить оптимальный цикл замены оборудования при следующих исходных данных:

покупная цена оборудования (Р ) составляет 12 ден. ед.;

остаточная стоимость оборудования S (t ) = 0;

f (t ) = r (t ) – u (t ) – максимальный доход, получаемый от оборудования возраста t лет за год при условии оптимальной стратегии, где r (t ) – стоимость продукции, выпускаемой за год на единице оборудования возраста t лет, u (t ) – ежегодные затраты на обслуживание оборудования возраста t лет;

N = 8 лет.

Зависимость f (t ) от t задана в таблице.

Найти оптимальную стратегию фирмы в распределении автолавок по населённым пунктам, максимизирующую общий товарооборот.

4. В таблице указан возможный прирост выпуска продукции четырьмя плодово-консервными заводами в области в млн. р. При осуществлении инвестиций на их модернизацию с дискретностью 50 млн. р., причём на один завод можно осуществить только одну инвестицию.

Составить план распределения инвестиций между заводами области, максимизирующий общий прирост выпуска продукции.

5. В трёх областях необходимо построить 5 предприятий по переработке сельскохозяйственной продукции одинаковой мощности.

Разместить предприятия таким образом, чтобы осуществить минимальные суммарные затраты на их строительство и эксплуатацию.

Функция расходов g i (x ), характеризующая величину затрат на строительство и эксплуатацию в зависимости от количества размещаемых предприятий в i -й области, приведена в таблице.

А Х (восток)

Ответы: 1. Оборудование заменить через 3 года.

2. Оборудование заменить через 4 года.

3. В первый населённый пункт направить 1 автолавку, во второй – 3, в третий – 1, при этом товарооборот будет максимальный, равный 64 тыс. р.

4. Инвестировать третьему заводу 50 млн. р., четвёртому заводу – 150 млн. р., максимальный прирост выпуска продукции составит 146 млн. р.

5. В первой области построить 2 предприятия, в третьей – 3, минимальные затраты составят 29 млн. р.

6. , минимальные затраты равны 35 млн. р.

Известно, что оборудова­ние со временем изнашивается, стареет физически и морально. В процес­се эксплуатации, как правило, падает его производительность и растут эксплуатационные расходы на текущий ремонт. Со временем возникает необходимость замены оборудования, так как его дальнейшая эксплуата­ция обходится дороже, чем ремонт. Отсюда задача о замене может быть сформулирована так. В процессе работы оборудование дает ежегодно прибыль, требует эксплуатационных затрат и имеет остаточную стои­мость. Эти характеристики зависят от возраста оборудования. В любом году оборудование можно сохранить, продать по остаточной цене и при­обрести новое. В случае сохранения оборудования возрастают эксплуата­ционные расходы и снижается производительность. При замене нужны значительные дополнительные капитальные вложения. Задача состоит в определении оптимальной стратегии замен в плановом периоде, с тем чтобы суммарная прибыль за этот период была максимальной.

Для количественной формулировки задачи введем следующие обо­значения: r(t) - стоимость продукции, производимой за год на единице оборудования возраста t лет; u(t) - расходы, связанные с эксплуатацией этого оборудования; s(t) - остаточная стоимость оборудования возраста t лет; р - покупная цена оборудования; Т - продолжительность плано­вого периода; t = 0,1, 2,... , Т - номер текущего года.

Решение. Чтобы решить задачу, применим принцип оптимально­сти Р. Беллмана. Рассмотрим интервалы (годы) планового периода в по­следовательности от конца к началу. Введем функцию условно-опти­мальных значений функции цели Fk(t). Эта функция показывает мак­симальную прибыль, получаемую от оборудования возраста t лет за по­следние к лет планового периода. Здесь возраст оборудования рассмат­ривается в направлении естественного хода времени. Например, t = 0 соответствует использованию совершенно нового оборудования. Временные же шаги процесса нумеруются в обратном порядке. Напри­мер, при к = 1 рассматривается последний год планового периода, при к = 2 - последние два года и т. д., при к = Т - последние Т лет, т. е. весь плановый период. Направления изменения t и к показаны на рисунке.

В этой задаче систему составляет оборудование. Ее состояние ха­рактеризуется возрастом. Вектор управления - это решение в момент t = = 0,1, 2,... , Т о сохранении или замене оборудования. Для нахождения оптимальной политики замен следует проанализировать, согласно прин­ципу оптимальности, процесс от конца к началу. Для этого сделаем пред­положение о состоянии оборудования на начало последнего года (k = 1). Пусть оборудование имеет возраст t лет. В начале Т-го года имеются две возможности: 1) сохранить оборудование на Т-й год, тогда прибыль за последний год составит r(t) - u(t); 2) продать оборудование по остаточ­ной стоимости и купить новое, тогда прибыль за последний год будет равна s(t) - р + г(0) - u(0), где г(0) - стоимость продукции, выпущенной на новом оборудовании за первый год его ввода; u(0) - эксплуатацион­ные расходы в этом году. Здесь целесообразно разворачивать процесс от конца к началу. Для последнего года (к = 1) оптималь­ной политикой с точки зрения всего процесса будет политика, обеспе­чивающая максимальную прибыль только за последний год. Учитывая значение прибыли при различном образе действия (замена - сохране­ние), приходим к выводу, что решение о замене оборудования возраста t лет следует принять в случае, когда прибыль от нового оборудования на последнем периоде больше, чем от старого, т.е. при условии


Итак, для последнего, года оптимальная политика и максимальная прибыль F 1 {t) находятся из условия

Пусть к = 2, т. е. рассмотрим прибыль за два последних года. Де­лаем предположение о возможном состоянии t оборудования на начало предпоследнего года. Если в начале этого года принять решение о сохранении оборудования, то к концу года будет получена прибыль r(t) - u(t). На начало последнего года оборудование перейдет в состояние t + 1, и при оптимальной политике в последнем году оно принесет прибыль, равную F 1 (t + 1). Таким образом, общая прибыль за два года составит r(t) - u(t) + F 1 (t + 1). Если же в начале предпоследнего года будет при­нято решение о замене оборудования, то прибыль за предпоследний год составит s(t)-p+r(0)-u(0). Поскольку приобретено новое оборудование, на начало последнего года оно будет в состоянии t = 1. Следовательно, общая прибыль за последние два года при оптимальной политике в по­следнем году составит

Условно-оптимальной в последние два года будет политика, достав­ляющая максимальную прибыль:

Аналогично находим выражения для условно-оптимальной прибыли за три последних года, четыре и т. д. Общее функциональное уравнение примет вид

Таким образом, разворачивая весь процесс от конца к началу, получаем, что максимальная прибыль за плановый период Т составит F T (t 0). Так как начальное состояние to известно, из выражения для F T (t 0) находим оптимальное решение в начале первого года, потом вытекающее оптимальное решение для второго года и т.д. Обратимся к чи­словому примеру.

Разработать оптимальную политику замены оборудования при усло­виях:

1) стоимость r(t) продукции, производимой с использованием обо­рудования за год, и расходы u(t), связанные с эксплуатацией оборудова­ния, заданы таблицей;

2) ликвидационная стоимость машины не зависит от ее возраста и равна 2;

3) цена нового оборудования со временем не меняется и равна 15;

4) продолжительность планового периода 12 лет.

Итак, s(t) = 2, р = 15, Т = 12.

Запишем функциональные уравнения для F 1 (t) и F к (t) при числовых значениях нашего примера:

Пользуясь выражениями (8.9), (8.10), будем последовательно вычис­лять значения максимальной прибыли F к (t) и записывать их в специаль­ную таблицу (табл. 8.4). Первую строку получим, придавая параметру t в равенстве (8.9) значения 0,1,... ,12 и используя исходные данные табл. 8.3. Например, при t = 0

Заметим, что если прибыль от нового оборудования равна прибыли от старого, то старое лучше сохранить еще на год:


Из табл. 8.3 видно, что r(t) – u(t) с ростом t убывает. Поэтому при t > 9 оптимальной будет политика замены оборудования. Чтобы раз­личать, в результате какой политики получается условно-оптимальное значение прибыли, будем эти значения (до t = 9 включительно опти­мальной является политика сохранения) разграничивать жирной лини­ей. Для заполнения второй строки табл. 8.4 используем формулу (8.10). Для к = 2 получаем

Придадим параметру t значения 0,1,2,... ,12, значения r(t) и u(t) возьмем из табл. 8.3, а значения F 1 (t + 1) - из первой строки табл. 8.4. Для третьей строки расчетную формулу получим из равенства (8.10) при к = 3:

и т. д. Заполнив табл. 8.4, данные ее используем для решения постав­ленной задачи. Эта таблица содержит много ценной информации и позволяет решать все семейство задач, в которое мы погружали исходную задачу.

Пусть, например, в начале планового периода имеем оборудование возраста 6 лет. Разработаем "политику замен" на двенадцатилетний пе­риод, доставляющую максимальную прибыль. Информация для этого имеется в табл. 8.4. Максимальная прибыль, которую можно получить за 12 лет при условии, что вначале имелось оборудование возраста 6 лет, находится в табл. 8.4 на пересечении столбца t = 6 и строки F12(t); она составляет 180 единиц.

Значение максимальной прибыли F12(6) = 180 записано справа от ломаной линии, т.е. в области "политики замены". Это значит, что для достижения в течение 12 лет максимальной прибыли в начале первого года оборудование надо заменить. В течение первого года новое обору­дование постареет на год, т.е., заменив оборудование и проработав на нем 1 год, мы за 11 лет до конца планового периода будем иметь обо­рудование возраста 1 год. Из табл. 8.4 берем F11(l) = 173. Это значе­ние располагается в области "политики сохранения", т. е. во втором году планового периода надо сохранить оборудование возраста 1 год, и, про­работав на нем год, за 10 лет до конца планового периода будем иметь оборудование возраста 2 года.

Выясняем, что значение F10(2) = 153 помещено в области сохра­нения. Работаем на оборудовании еще год. Теперь до конца планового периода осталось 9 лет, а возраст оборудования составляет 3 года. Нахо­дим F9(3) = 136. Это область сохранения. Работаем на оборудовании еще год. Его возраст становится равным 4 годам. До конца планового перио­да остается 8 лет. Определяем F8(4) = 120. Это область замен. Заменяем оборудование на новое. Проработаем на нем в течение четвертого года. Оно постареет на год. До конца планового периода останется 7 лет. На­ходим F7(l) = 113. Это область сохранения. Продолжив подобные рассу­ждения, установим, что F6(2) = 93, F5(3) = 76 расположены в области сохранения, F4(4)=60 - в области замен, F3(l) = 53, F2(2) = 33, F1(3) = 16 - в области сохранения. Разработанную политику изобразим следующей цепочкой:

Таким образом, вместо поиска оптимальной "политики замен" на плановый период в 12 лет мы погрузили исходную задачу в семейство подобных, когда период меняется от 1 до 12. Решение ведется по прин­ципу оптимальности для любого состояния системы, независимо от ее предыстории. Оптимальная "политика замен" является оптимальной на оставшееся число лет. Табл. 8.4 содержит информацию для решения и других задач. Из нее можно найти оптимальную стратегию замены оборудования с лю­бым начальным состоянием от 0 до 12 лет и на любой плановый период, не превосходящий 12 лет. Например, найдем "политику замен" на пла­новый период в 10 лет, если вначале имелось оборудование пятилетнего возраста:

Задачу о замене оборудования мы упростили. На практике же дета­лями не пренебрегают. Легко учесть, например, случай, когда остаточная стоимость оборудования s(t) зависит от времени. Может быть принято решение о замене оборудования не новым, а уже проработавшим некото­рое время. Не составляет также труда учесть возможность капитального ремонта старого оборудования. При этом в понятие "состояние" системы необходимо включить время последнего ремонта оборудования. Функция Fk(ti,t2) выражает прибыль за последние к лет планового периода при условии, что вначале имелось оборудование возраста t1, прошедшее ка­питальный ремонт после t2 лет службы. Характеристики г, s и и также будут функциями двух переменных t1 и t2.

Определить оптимальную стратегию использования оборудования в период времени длительностью т лет, причем прибыль за каждые i лет, i = от использования оборудования возраста t лет должна быть максимальной.

Известны

r (t )выручка от реализации продукции, произведенной за год на оборудовании возраста t лет;

l (t ) – годовые затраты, зависящие от возраста оборудования t;

с (t ) – остаточная стоимость оборудования возраста t лет;

Р – стоимость нового оборудования.

Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, выраженный в годах.

Воспользуемся приведенными выше этапами составления математической модели задачи.

1. Определение числа шагов. Число шагов равно числу лет, в течение которого эксплуатировалось это оборудование.

2. Определние состояний системы. Состояние системы характеризуется возрастом оборудования t , t= .

3. Определение уравнений. В начале i -го шага, i = может быть выбрано одно из двух управлений: заменять или не заменять оборудование. Каждому варианту управления приписывается число

4. Определение функции выигрыша на i -ом шаге. Функция выигрыша на i -ом шаге – это прибыль от использования оборудования к концу i -го года эксплуатации, t= , i = . Таким образом, если оборудование не продается, то прибыль от его использования – это разность между стоимостью произведенной продукции и эксплуатационными издержками. При замене оборудования прибыль составляет разность между остаточной стоимостью оборудования и стоимостью нового оборудования, к которой прибавляется разность между стоимостью продукции и эксплуатационными издержками для нового оборудования, возраст которого в начале i -го шага составляет 0 лет.

5. Определение функции изменения состояния

(9.7)

Таким образом, если оборудование не меняется х i =0, то возраст оборудования увеличивается на один год t +1, если же оборудование меняется х i =1, то оборудование будет годовалым.

6. Составление функционального уравнения для i =т

Верхняя строка функционального уравнения соответствует ситуации, при которой в последний год оборудование не меняется и предприятие получает выигрыш в размере разницы между выручкой r (t ) и годовыми затратами l (t ).

7. Составление основного функционального уравнения

где W i (t t лет с i -го шага (с конца i -го года) до конца периода эксплуатации;

W i + 1 (t ) – прибыль от использования оборудования возраста t+ 1год с (i +1)-го шага до конца периода эксплуатации.

Математическая модель задачи построена.

Пример

т =12, р= 10, с (t )=0, r (t ) – l (t )=φ (t ).

Значения φ (t ) даны в таблице 9.1.

Таблица 9.1.

t
φ (t )

Для данного примера функциональные уравнения будут иметь вид

Рассмотрим заполнение таблицы для нескольких шагов.

Условная оптимизация начинается с последнего 12-го шага. Для i =12 рассматриваются возможные состояния системы t= 0, 1, 2, …, 12. Функциональное уравнение на 12-ом шаге имеет вид

1) t= 0 х 12 (0)=0.

2) t= 1 х 12 (1)=0.

10) t= 9 х 12 (9)=0.

11) t= 10 х 12 (10)=0; х 12 (10)=1.

13) t= 12 х 12 (12)=0; х 12 (12)=1.

Таким образом, на 12-ом шаге оборудование возраста 0 – 9 лет заменять не надо. Оборудование возраста 10 – 12 лет можно заменить или продолжить его эксплуатировать, так как для t= 10, 11, 12 имеется два условных оптимизационных управления 1 и 0.

По результатам расчетов заполняются два столбца таблицы 9.2, соответствующие i= 12.

Условная оптимизация 11-го шага.

Для i =11 рассматриваются все возможные состояния системы t =0, 1, 2, …, 12. Функциональное уравнение на 11-м шаге имеет вид

1) t= 0 х 11 (0)=0.

2) t= 1 х 11 (1)=0.

6) t= 5 х 11 (5)=0; х 11 (5)=1.

7) t= 6 х 11 (6)=1.

13) t= 12 х 11 (12)=1.

Таким образом на 11-ом шаге не следует заменять оборудование возраста 0 – 4 года. Для оборудования возраста 5 лет возможны две стратегии использования: заменить или продолжать эксплуатировать.

Начиная с 6-го года оборудование следует заменять. По результатам расчетов заполняются два столбца таблицы 9.2, соответствующие i =11.

1) t= 0 х 10 (0)=0.

2) t= 1 х 10 (1)=0.

3) t= 2 х 10 (2)=0.

4) t= 3 х 10 (3)=0.

5) t= 4 х 10 (4)=1.

13) t= 12 х 10 (12)=1.

На 10-ом шаге не следует заменять оборудование возраста 0 – 3 года. Начиная с 4-го года, оборудование следует заменять, так как новое оборудование приносит бóльшую прибыль.

По результатам расчетов заполняются два столбца в 9.2, соответствующие i =10.

Аналогичным образом заполняются остальные девять столбцов таблицы 9.2. При расчетах W i + 1 (t ) на каждом шаге значения φ (t ) для каждого t =0, 1, 2, …, 12 берутся из таблицы 9.1 исходных данных, приведенной в условии задачи, а значения W i (t ) – из последнего, заполненного на предыдущем шаге столбца в 9.2.

Этап условной оптимизации заканчивается после заполнения таблицы 9.2.

Безусловная оптимизация начинается с первого шага.

Предположим, что на первом шаге i =1 имеется новое оборудование, возраст которого 0 лет.

Для t=t 1 =0 оптимальный выигрыш составляет W 1 (0)=82. Это значение соответствует максимальной прибыли от использования нового оборудования в течение 12 лет.

W*=W 1 (0)=82.

Выигрышу W 1 (0)=82 соответствует х 1 (0)=0.

Для i =2 по формуле (9.7) t 2 =t 1 +1=1.

Безусловное оптимальное управление х 2 (1)=0.

Для i =3 по формуле (9.7) t 3 =t 2 +1=2.

Безусловное оптимальное управление х 3 (2)=0.

i =4 t 4 =t 3 +1=3 х 4 (3)=0
i =5 t 5 =t 4 +1=4 х 5 (4)=1
i =6 t 6 = 1 х 6 (1)=0
i =7 t 7 =t 6 +1=2 х 7 (2)=0
i =8 t 8 =t 7 +1=3 х 8 (3)=0
i =9 t 9 =t 8 +1=4 x 9 (4)=1
i =10 t 10 = 1 х 10 (1)=0
i =11 t 11 =t 10 +1=2 х 11 (2)=0
i =12 t 12 =t 11 +1=3 х 12 (3)=0

В рамках данной задачи оптимальная стратегия заключается в замене оборудования при достижении им возраста 4-х лет. Аналогичным образом можно определить оптимальную стратегию использования оборудования любого возраста.

В левой колонке таблицы 9.2 записываются возможные случаи системы t = , в верхней строке – номера шагов i = . Для каждого шага определяются условные оптимальные управления х i (t ) и условный оптимальный выигрыш W i (t ) c i -го шага и до конца для оборудования возраста t лет.

Управления, составляющие оптимальную стратегию использования оборудования, выделены в таблице 9.2 жирным шрифтом.


Таблица 9.2.

t i =12 i =11 i =10 i =9 i =8 i =7 i =6 i =5 i =4 i =3 i =2 i =1
x 12 W 12 x 11 W 11 x 10 W 10 x 9 W 9 x 8 W 8 x 7 W 7 x 6 W 6 x 5 W 5 x 4 W 4 x 3 W 3 x 2 W 2 x 1 W 1
0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1
0/1
0/1
0/1