Проанализируйте матрицу парных коэффициентов корреляции. Дана матрица парных коэффициентов корреляции

22.09.2019
y x (1) x (2) x (3) x (4) x (5)
y 1.00 0.43 0.37 0.40 0.58 0.33
x (1) 0.43 1.00 0.85 0.98 0.11 0.34
x (2) 0.37 0.85 1.00 0.88 0.03 0.46
x (3) 0.40 0.98 0.88 1.00 0.03 0.28
x (4) 0.58 0.11 0.03 0.03 1.00 0.57
x (5) 0.33 0.34 0.46 0.28 0.57 1.00

Анализ матрицы парных коэффициентов корреляции показывает, что результативный показатель наиболее тесно связан с показателем x (4) - количество удобрений, расходуемых на 1 га ().

В то же время связь между признаками-аргументами достаточно тесная. Так, существует практически функциональная связь между числом колесных тракторов (x (1)) и числом орудий поверхностной обработки почвы .

О наличии мультиколлинеарности свидетельствуют также коэффициенты корреляции и . Учитывая тесную взаимосвязь показателей x (1) , x (2) и x (3) , в регрессионную модель урожайности может войти лишь один из них.

Чтобы продемонстрировать отрицательное влияние мультиколлинеарности, рассмотрим регрессионную модель урожайности, включив в нее все исходные показатели:

F набл = 121.

В скобках указаны значения исправленных оценок среднеквадратических отклонений оценок коэффициентов уравнения .

Под уравнением регрессии представлены следующие его параметры адекватности: множественный коэффициент детерминации ; исправленная оценка остаточной дисперсии , средняя относительная ошибка аппроксимации и расчетное значение -критерия F набл = 121.

Уравнение регрессии значимо, т.к. F набл = 121 > F kp = 2,85 найденного по таблице F -распределения при a=0,05; n 1 =6 и n 2 =14.

Из этого следует, что Q¹0, т.е. и хотя бы один из коэффициентов уравнения q j (j = 0, 1, 2, ..., 5) не равен нулю.

Для проверки гипотезы о значимости отдельных коэффициентов регрессии H0: q j =0, где j =1,2,3,4,5, сравнивают критическое значение t kp = 2,14, найденное по таблице t -распределения при уровне значимости a=2Q =0,05 и числе степеней свободы n=14, с расчетным значением . Из уравнения следует, что статистически значимым является коэффициент регрессии только при x (4) , так как ½t 4 ½=2,90 > t kp =2,14.



Не поддаются экономической интерпретации отрицательные знаки коэффициентов регрессии при x (1) и x (5) . Из отрицательных значений коэффициентов следует, что повышение насыщенности сельского хозяйства колесными тракторами (x (1)) и средствами оздоровления растений (x (5)) отрицательно сказывается на урожайности. Таким образом, полученное уравнение регрессии неприемлемо.

Для получения уравнения регрессии со значимыми коэффициентами используем пошаговый алгоритм регрессионного анализа. Первоначально используем пошаговый алгоритм с исключением переменных.

Исключим из модели переменную x (1) , которой соответствует минимальное по абсолютной величине значение ½t 1 ½=0,01. Для оставшихся переменных вновь построим уравнение регрессии:

Полученное уравнение значимо, т.к. F набл = 155 > F kp = 2,90, найденного при уровне значимости a=0,05 и числах степеней свободы n 1 =5 и n 2 =15 по таблице F -распределения, т.е. вектор q¹0. Однако в уравнении значим только коэффициент регрессии при x (4) . Расчетные значения ½t j ½ для остальных коэффициентов меньше t кр = 2,131, найденного по таблице t -распределения при a=2Q =0,05 и n=15.

Исключив из модели переменную x (3) , которой соответствует минимальное значение t 3 =0,35 и получим уравнение регрессии:

(2.9)

В полученном уравнении статистически не значим и экономически не интерпретируем коэффициент при x (5) . Исключив x (5) получим уравнение регрессии:

(2.10)

Мы получили значимое уравнение регрессии со значимыми и интерпретируемыми коэффициентами.

Однако полученное уравнение является не единственно “хорошей” и не “самой лучшей” моделью урожайности в нашем примере.

Покажем, что в условии мультиколлинеарности пошаговый алгоритм с включением переменных является более эффективным. На первом шаге в модель урожайности y входит переменная x (4) , имеющая самый высокий коэффициент корреляции с y , объясняемой переменной -r (y , x (4))=0,58. На втором шаге, включая уравнение наряду с x (4) переменные x (1) или x (3) , мы получим модели, которые по экономическим соображениям и статистическим характеристикам превосходят (2.10):

(2.11)

(2.12)

Включение в уравнение любой из трех оставшихся переменных ухудшает его свойства. Смотри, например, уравнение (2.9).

Таким образом, мы имеем три “хороших” модели урожайности, из которых нужно выбрать по экономическим и статистическим соображениям одну.

По статистическим критериям наиболее адекватна модель (2.11). Ей соответствуют минимальные значения остаточной дисперсии =2,26 и средней относительной ошибки аппроксимации и наибольшие значения и F набл = 273.

Несколько худшие показатели адекватности имеет модель (2.12), а затем - модель (2.10).

Будем теперь выбирать наилучшую из моделей (2.11) и (2.12). Эти модели отличаются друг от друга переменными x (1) и x (3) . Однако в моделях урожайностей переменная x (1) (число колесных тракторов на 100 га) более предпочтительна, чем переменная x (3) (число орудий поверхностной обработки почвы на 100 га), которая является в некоторой степени вторичной (или производной от x (1)).

В этой связи из экономических соображений предпочтение следует отдать модели (2.12). Таким образом, после реализации алгоритма пошагового регрессионного анализа с включением переменных и учета того, что в уравнение должна войти только одна из трех связанных переменных (x (1) , x (2) или x (3)) выбираем окончательное уравнение регрессии:

Уравнение значимо при a=0,05, т.к. F набл = 266 > F kp = 3,20, найденного по таблице F -распределения при a=Q =0,05; n 1 =3 и n 2 =17. Значимы и все коэффициенты регрессии и в уравнении ½t j ½>t kp (a=2Q =0,05; n=17)=2,11. Коэффициент регрессии q 1 следует признать значимым (q 1 ¹0) из экономических соображений, при этом t 1 =2,09 лишь незначительно меньше t kp = 2,11.

Из уравнения регрессии следует, что увеличение на единицу числа тракторов на 100 га пашни (при фиксированном значении x (4)) приводит к росту урожайности зерновых в среднем на 0,345 ц/га.

Приближенный расчет коэффициентов эластичности э 1 »0,068 и э 2 »0,161 показывает, что при увеличении показателей x (1) и x (4) на 1% урожайность зерновых повышается в среднем соответственно на 0,068% и 0,161%.

Множественный коэффициент детерминации свидетельствует о том, что только 46,9% вариации урожайности объясняется вошедшими в модель показателями (x (1) и x (4)), то есть насыщенностью растениеводства тракторами и удобрениями. Остальная часть вариации обусловлена действием неучтенных факторов (x (2) , x (3) , x (5) , погодные условия и др.). Средняя относительная ошибка аппроксимации характеризует адекватность модели, так же как и величина остаточной дисперсии . При интерпретации уравнения регрессии интерес представляют значения относительных ошибок аппроксимации . Напомним, что - модельное значение результативного показателя, характеризует среднее для совокупности рассматриваемых районов значение урожайности при условии, что значения объясняющих переменных x (1) и x (4) зафиксированы на одном и том же уровне, а именно x (1) = x i (1) и x (4) = x i (4) . Тогда по значениям d i можно сопоставлять районы по урожайности. Районы, которым соответствуют значения d i >0, имеют урожайность выше среднего, а d i <0 - ниже среднего.

В нашем примере, по урожайности наиболее эффективно растениеводство ведется в районе, которому соответствует d 7 =28%, где урожайность на 28% выше средней по региону, и наименее эффективно - в районе с d 20 =-27,3%.


Задачи и упражнения

2.1. Из генеральной совокупности (y , x (1) , ..., x (p)), где y имеет нормальный закон распределения с условным математическим ожиданием и дисперсией s 2 , взята случайная выборка объемом n , и пусть (y i , x i (1) , ..., x i (p)) - результат i -го наблюдения (i =1, 2, ..., n ). Определить: а) математическое ожидание МНК-оценки вектора q ; б) ковариационную матрицу МНК-оценки вектора q ; в) математическое ожидание оценки .

2.2. По условию задачи 2.1 найти математическое ожидание суммы квадратов отклонений, обусловленных регрессией, т.е. EQ R , где

.

2.3. По условию задачи 2.1 определить математическое ожидание суммы квадратов отклонений, обусловленных остаточной вариацией относительно линий регрессии, т.е. EQ ост, где

2.4. Доказать, что при выполнении гипотезы Н 0: q=0 статистика

имеет F-распределение с числами степеней свободы n 1 =p+1 и n 2 =n-p-1.

2.5. Доказать, что при выполнении гипотезы Н 0: q j =0 статистика имеет t-распределение с числом степеней свободы n=n-p-1.

2.6. На основании данных (табл.2.3) о зависимости усушки кормового хлеба (y ) от продолжительности хранения (x ) найти точечную оценку условного математического ожидания в предположении, что генеральное уравнение регрессии - линейное.

Таблица 2.3.

Требуется: а) найти оценки и остаточной дисперсии s 2 в предположении, что генеральное уравнение регрессии имеет вид ; б) проверить при a=0,05 значимость уравнения регрессии, т.е. гипотезу Н 0: q=0; в) с надежностью g=0,9 определить интервальные оценки параметров q 0 , q 1 ; г) с надежностью g=0,95 определить интервальную оценку условного математического ожидания при х 0 =6; д) определить при g=0,95 доверительный интервал предсказания в точке х =12.

2.7. На основании данных о динамике темпов прироста курса акций за 5 месяцев, приведенных в табл. 2.4.

Таблица 2.4.

месяцы (x )
y (%)

и предположения, что генеральное уравнение регрессии имеет вид , требуется: а) определить оценки и параметров уравнения регрессии и остаточной дисперсии s 2 ; б) проверить при a=0,01 значимость коэффициента регрессии, т.е. гипотезы H 0: q 1 =0;

в) с надежностью g=0,95 найти интервальные оценки параметров q 0 и q 1 ; г) с надежностью g=0,9 установить интервальную оценку условного математического ожидания при x 0 =4; д) определить при g=0,9 доверительный интервал предсказания в точке x =5.

2.8. Результаты исследования динамики привеса молодняка приведены в табл.2.5.

Таблица 2.5.

Предполагая, что генеральное уравнение регрессии - линейное, требуется: а) определить оценки и параметров уравнения регрессии и остаточной дисперсии s 2 ; б) проверить при a=0,05 значимость уравнения регрессии, т.е. гипотезы H 0: q=0;

в) с надежностью g=0,8 найти интервальные оценки параметров q 0 и q 1 ; г) с надежностью g=0,98 определить и сравнить интервальные оценки условного математического ожидания при x 0 =3 и x 1 =6;

д) определить при g=0,98 доверительный интервал предсказания в точке x =8.

2.9. Себестоимость (y ) одного экземпляра книги в зависимости от тиража (x ) (тыс.экз.) характеризуется данными, собранными издательством (табл.2.6). Определить МНК-оценки и параметров уравнения регрессии гиперболического вида , с надежностью g=0,9 построить доверительные интервалы для параметров q 0 и q 1 , а также условного математического ожидания при x =10.

Таблица 2.6.

Определить оценки и параметров уравнения регрессии вида , проверить при a=0,05 гипотезу Н 0: q 1 =0 и построить с надежностью g=0,9 доверительные интервалы для параметров q 0 и q 1 и условного математического ожидания при x =20.

2.11. В табл. 2.8 представленные данные о темпах прироста (%) следующих макроэкономических показателей n =10 развитых стран мира за 1992г.: ВНП - x (1) , промышленного производства - x (2) , индекса цен - x (3) .

Таблица 2.8.

Страны x и параметров уравнения регрессии, оценку остаточной дисперсии; б) проверить при a=0,05 значимость коэффициента регрессии, т.е. Н 0: q 1 =0; в) с надежностью g=0,9 найти интервальные оценки q 0 и q 1 ; г) найти при g=0,95 доверительный интервал для в точке х 0 =х i , где i =5; д) сравнить статистические характеристики уравнений регрессий: 1, 2 и 3.

2.12. Задачу 2.11 решить, приняв за объясняемую величину (у ) показатель x (1) , а за объясняющую (х ) переменную x (3) .

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник. М., ЮНИТИ, 1998 (2-е издание 2001);

2. Айвазян С.А., Мхитарян В.С. Прикладная статистика в задачах и упражнениях: Учебник. М. ЮНИТИ – ДАНА, 2001;

3. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. М., Финансы и статистика, 1985, 487с.;

4. Айвазян С.А., Бухштабер В. М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерностей. М., Финансы и статисика, 1989, 607с.;

5. Джонстон Дж. Эконометрические методы, М.: Статистика, 1980, 446с.;

6. Дубров А.В., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. М., Финансы и статистика, 2000;

7. Мхитарян В.С., Трошин Л.И. Исследование зависимостей методами корреляции и регрессии. М., МЭСИ, 1995, 120с.;

8. Мхитарян В.С., Дубров А.М., Трошин Л.И. Многомерные статистические методы в экономике. М., МЭСИ, 1995, 149с.;

9. Дубров А.М., Мхитарян В.С., Трошин Л.И. Математическая статистика для бизнесменов и менеджеров. М., МЭСИ, 2000, 140с.;

10. Лукашин Ю.И. Регрессионные и адаптивные методы прогнозирования: Учебное пособие, М., МЭСИ, 1997.

11. Лукашин Ю.И. Адаптивные методы краткосрочного прогнозирования. ‑ М., Статистика, 1979.


ПРИЛОЖЕНИЯ


Приложение 1 . Варианты заданий для самостоятельных компьютерных исследований.

Задание 2

1. Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель.

2. Построить уравнение множественной регрессии в линейной форме с выбранными факторами.

3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Построить уравнение регрессии со статистически значимыми факторами. Оценить качество уравнения регрессии с помощью коэффициента детерминации R 2 . Оценить точность построенной модели.

5. Оценить прогноз объема выпуска продукции, если прогнозные значения факторов составляют 75% от их максимальных значений.

Условия задачи (Вариант 21)

По данным, представленным в таблице 1 (n =17), изучается зависимость объема выпуска продукции Y (млн. руб.) от следующих факторов (переменных):

X 1 – численность промышленно-производственного персонала, чел.

X 2 – среднегодовая стоимость основных фондов, млн. руб.

X 3 – износ основных фондов, %

X 4 – электровооруженность, кВт×ч.

X 5 – техническая вооруженность одного рабочего, млн. руб.

X 6 – выработка товарной продукции на одного работающего, руб.

Таблица 1. Данные выпуска продукции

Y X 1 X 2 X 3 X 4 X 5 X 6
39,5 4,9 3,2
46,4 60,5 20,4
43,7 24,9 9,5
35,7 50,4 34,7
41,8 5,1 17,9
49,8 35,9 12,1
44,1 48,1 18,9
48,1 69,5 12,2
47,6 31,9 8,1
58,6 139,4 29,7
70,4 16,9 5,3
37,5 17,8 5,6
62,0 27,6 12,3
34,4 13,9 3,2
35,4 37,3 19,0
40,8 55,3 19,3
48,1 35,1 12,4


Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель

В таблице 2 представлена матрица коэффициентов парной корреляции для всех переменных, участвующих в рассмотрении. Матрица получена с помощью инструмента Корреляция из пакета Анализ данных в Excel.

Таблица 2. Матрица коэффициентов парной корреляции

Y X1 X2 X3 X4 X5 X6
Y
X1 0,995634
X2 0,996949 0,994947
X3 -0,25446 -0,27074 -0,26264
X4 0,12291 0,07251 0,107572 0,248622
X5 0,222946 0,166919 0,219914 -0,07573 0,671386
X6 0,067685 -0,00273 0,041955 -0,28755 0,366382 0,600899

Визуальный анализ матрицы позволяет установить:

1) У имеет довольно высокие парные корреляции с переменными Х1, Х2 (>0,5) и низкие с переменными Х3,Х4,Х5,Х6 (<0,5);

2) Переменные анализа Х1, Х2 демонстрируют довольно высокие парные корреляции, что обуславливает необходимость проверки факторов на наличие между ними мультиколлинеарности. Тем более, что одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных.

Для выявления мультиколлинеарности факторов выполним тест Фаррара-Глоубера по факторам Х1,Х2,Х3,Х4,Х5,Х6 .

Проверка теста Фаррара-Глоубера на мультиколлинеарность факторов включает несколько этапов.

1) Проверка наличия мультиколлинеарности всего массива переменных .

Одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных. Для выявления мультиколлинеарности между факторами вычисляется матрица межфакторных корреляций R с помощью Пакета анализа данных (таблица 3).

Таблица 3.Матрица межфакторных корреляций R

X1 X2 X3 X4 X5 X6
X1 0,994947 -0,27074 0,07251 0,166919 -0,00273
X2 0,994947 -0,26264 0,107572 0,219914 0,041955
X3 -0,27074 -0,26264 0,248622 -0,07573 -0,28755
X4 0,07251 0,107572 0,248622 0,671386 0,366382
X5 0,166919 0,219914 -0,07573 0,671386 0,600899
X6 -0,00273 0,041955 -0,28755 0,366382 0,600899

Между факторами Х1 и Х2, Х5 и Х4, Х6 и Х5 наблюдается сильная зависимость (>0,5).

Определитель det (R) = 0,001488 вычисляется с помощью функции МОПРЕД. Определитель матрицы R стремится к нулю, что позволяет сделать предположение об общей мультиколлинеарности факторов.

2) Проверка наличия мультиколлинеарности каждой переменной с другими переменными:

· Вычислим обратную матрицу R -1 с помощью функции Excel МОБР (таблица 4):

Таблица 4. Обратная матрица R -1

X1 X2 X3 X4 X5 X6
X1 150,1209 -149,95 3,415228 -1,70527 6,775768 4,236465
X2 -149,95 150,9583 -3,00988 1,591549 -7,10952 -3,91954
X3 3,415228 -3,00988 1,541199 -0,76909 0,325241 0,665121
X4 -1,70527 1,591549 -0,76909 2,218969 -1,4854 -0,213
X5 6,775768 -7,10952 0,325241 -1,4854 2,943718 -0,81434
X6 4,236465 -3,91954 0,665121 -0,213 -0,81434 1,934647

· Вычисление F-критериев , где – диагональные элементы матрицы , n=17, k = 6 (таблица 5).

Таблица 5. Значения F-критериев

F1 (Х1) F2 (Х2) F3 (Х3) F4 (Х4) F5 (Х5) F6 (Х6)
89,29396 89,79536 0,324071 0,729921 1,163903 0,559669

· Фактические значения F-критериев сравниваются с табличным значением F табл = 3,21 (FРАСПОБР(0,05;6;10)) при n1= 6 и n2 = n - k – 1=17-6-1=10 степенях свободы и уровне значимости α=0,05, где k – количество факторов.

· Значения F-критериев для факторов Х1 и Х2 больше табличного, что свидетельствует о наличии мультиколлинеарности между данными факторами. Меньше всего влияет на общую мультиколлинеарность факторов фактор Х3.

3) Проверка наличия мультиколлинеарности каждой пары переменных

· Вычислим частные коэффициенты корреляции по формуле , где – элементы матрицы (таблица 6)

Таблица 6. Матрица коэффициентов частных корреляций

X1 X2 X3 X4 X5 X6
X1
X2 0,996086
X3 -0,22453 0,197329
X4 0,093432 -0,08696 0,415882
X5 -0,32232 0,337259 -0,1527 0,581191
X6 -0,24859 0,229354 -0,38519 0,102801 0,341239

· Вычисление t -критериев по формуле (таблица 7)

n - число данных = 17

K - число факторов = 6

Таблица 7.t-критерии для коэффициентов частной корреляции

X1 X2 X3 X4 X5 X6
X1
X2 35,6355
X3 -0,72862 0,636526
X4 0,296756 -0,27604 1,446126
X5 -1,07674 1,13288 -0,4886 2,258495
X6 -0,81158 0,745143 -1,31991 0,326817 1,147999

t табл = СТЬЮДРАСПОБР(0,05;10) = 2,23

Фактические значения t-критериев сравниваются с табличным значением при степенях свободы n-k-1 = 17-6-1=10 и уровне значимости α=0,05;

t21 > tтабл

t54 > tтабл

Из таблиц 6 и 7 видно, что две пары факторов X1 и Х2, Х4 и Х5 имеют высокую статистически значимую частную корреляцию, то есть являются мультиколлинеарными. Для того чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных коллинеарной пары. В паре Х1 и Х2 оставляем Х2, в паре Х4 и Х5 оставляем Х5.

Таким образом, в результате проверки теста Фаррара-Глоубера остаются факторы: Х2, Х3, Х5, Х6.

Завершая процедуры корреляционного анализа, целесообразно посмотреть частные корреляции выбранных факторов с результатом Y.

Построим матрицу парных коэффициентов корреляции, исходя из данных таблицы 8.

Таблица 8. Данные выпуска продукции с отобранными факторами Х2, Х3, Х5, Х6.

№ наблю-дения Y X 2 X 3 X 5 X 6
39,5 3,2
46,4 20,4
43,7 9,5
35,7 34,7
41,8 17,9
49,8 12,1
44,1 18,9
48,1 12,2
47,6 8,1
58,6 29,7
70,4 5,3
37,5 5,6
12,3
34,4 3,2
35,4
40,8 19,3
48,1 12,4

В последнем столбце таблицы 9 представлены значения t-критерия для столбца У.

Таблица 9.Матрица коэффициентов частной корреляции с результатом Y

Y X2 X3 X5 X6 t критерий (t табл (0,05;11)= 2,200985
Y 0,996949 -0,25446 0,222946 0,067685
X2 0,996949 -0,26264 0,219914 0,041955 44,31676
X3 -0,25446 -0,26264 -0,07573 -0,28755 0,916144
X5 0,222946 0,219914 -0,07573 0,600899 -0,88721
X6 0,067685 0,041955 -0,28755 0,600899 1,645749

Из таблицы 9 видно, что переменная Y имеет высокую и одновременно статистически значимую частную корреляцию с фактором Х2.

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х ; оценить статистическую значимость коэффициентов корреляции r (Y , X i); выбрать наиболее информативный фактор.

2. Построить модель парной регрессии с наиболее информативным фактором; дать экономическую интерпретацию коэффициента регрессии.

3. Оценить качество модели с помощью средней относительной ошибки аппроксимации, коэффициента детерминации и F – критерия Фишера (принять уровень значимости α=0,05).

4. С доверительной вероятностью γ=80% осуществить прогнозирование среднего значения показателя Y (прогнозные значения факторов приведены в Приложении 6). Представить графически фактические и модельные значения Y , результаты прогнозирования.

5. Методом включения построить двухфакторные модели, сохраняя в них наиболее информативный фактор; построить трехфакторную модель с полным перечнем факторов.

6. Выбрать лучшую из построенных множественных моделей. Дать экономическую интерпретацию ее коэффициентов.

7. Проверить значимость коэффициентов множественной регрессии с помощью t –критерия Стьюдента (принять уровень значимости α=0,05). Улучшилось ли качество множественной модели по сравнению с парной?

8. Дать оценку влияния факторов на результат с помощью коэффициентов эластичности, бета– и дельта– коэффициентов.

Задача 2. Моделирование одномерного временного ряда

В Приложении 7 приведены временные ряды Y(t) социально-экономических показателей по Алтайскому краю за период с 2000 г. по 2011 г. Требуется исследовать динамику показателя, соответствующего варианту задания.

Вариант Обозначение, наименование, единица измерения показателя
Y1 Потребительские расходы в среднем на душу населения (в месяц), руб.
Y2 Выбросы загрязняющих веществ в атмосферный воздух, тыс. тонн
Y3 Средние цены на вторичном рынке жилья (на конец года, за квадратный метр общей площади), руб
Y4 Объем платных услуг на душу населения, руб
Y5 Среднегодовая численность занятых в экономике, тыс. человек
Y6 Число собственных легковых автомобилей на 1000 человек населения (на конец года), штук
Y7 Среднедушевые денежные доходы (в месяц), руб
Y8 Индекс потребительских цен (декабрь к декабрю предыдущего года), %
Y9 Инвестиции в основной капитал (в фактически действовавших ценах), млн. руб
Y10 Оборот розничной торговли на душу населения (в фактически действовавших ценах), руб


Порядок выполнения работы

1. Построить линейную модель временного ряда , параметры которой оценить МНК. Пояснить смысл коэффициента регрессии.

2. Оценить адекватность построенной модели, используя свойства случайности, независимости и соответствия остаточной компоненты нормальному закону распределения.

3. Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

4. Осуществить прогнозирование рассматриваемого показателя на год вперед (прогнозный интервал рассчитать при доверительной вероятности 70%).

5. Представить графически фактические значения показателя, результаты моделирования и прогнозирования.

6. Провести расчет параметров логарифмического, полиномиального (полином 2-й степени), степенного, экспоненциального и гиперболического трендов. На основании графического изображения и значения индекса детерминации выбрать наиболее подходящий вид тренда.

7. С помощью лучшей нелинейной модели осуществить точечное прогнозирование рассматриваемого показателя на год вперед. Сопоставить полученный результат с доверительным прогнозным интервалом, построенным при использовании линейной модели.

ПРИМЕР

Выполнения контрольной работы

Задача 1

Фирма занимается реализацией подержанных автомобилей. Наименования показателей и исходные данные для эконометрического моделирования представлены в таблице:

Цена реализации, тыс.у.е. (Y ) Цена нового авт., тыс.у.е. (Х1 ) Срок эксплуатации, годы (Х2 ) Левый руль - 1, правый руль - 0, (Х3 )
8,33 13,99 3,8
10,40 19,05 2,4
10,60 17,36 4,5
16,58 25,00 3,5
20,94 25,45 3,0
19,13 31,81 3,5
13,88 22,53 3,0
8,80 16,24 5,0
13,89 16,54 2,0
11,03 19,04 4,5
14,88 22,61 4,6
20,43 27,56 4,0
14,80 22,51 3,3
26,05 31,75 2,3

Требуется:

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х; оценить статистическую значимость коэффициентов корреляции r(Y, X i); выбрать наиболее информативный фактор.

Используем Excel (Данные / Анализ данных / КОРРЕЛЯЦИЯ):

Получим матрицу коэффициентов парной корреляции между всеми имеющимися переменными:

У Х1 Х2 Х3
У
Х1 0,910987
Х2 -0,4156 -0,2603
Х3 0,190785 0,221927 -0,30308

Проанализируем коэффициенты корреляции между результирующим признаком Y и каждым из факторов X j:

> 0, следовательно, между переменными Y и Х 1 наблюдается прямая корреляционная зависимость: чем выше цена нового автомобиля, тем выше цена реализации.

> 0,7 – эта зависимость является тесной.

< 0, значит, между переменными Y и Х 2 наблюдается

обратная корреляционная зависимость: цена реализации ниже для авто-

мобилей с большим сроком эксплуатации.

– эта зависимость умеренная, ближе к слабой.

> 0, значит, между переменными Y и Х 3 наблюдается прямая корреляционная зависимость: цена реализации выше для автомобилей с левым рулем.

< 0,4 – эта зависимость слабая.

Для проверки значимости найденных коэффициентов корреляции используем критерий Стьюдента.

Для каждого коэффициента корреляции вычислим t -статистику по формуле и занесем результаты расчетов в дополнительный столбец корреляционной таблицы:

У Х1 Х2 Х3 t-статистики
У
Х1 0,910987 7,651524603
Х2 -0,4156 -0,2603 1,582847988
Х3 0,190785 0,221927 -0,30308 0,673265587

По таблице критических точек распределения Стъюдента при уровне значимости и числе степеней свободы определим критическое значение (Приложение 1, или функция СТЬЮДРАСПОБР).Y и сроком эксплуатации Х 2 достоверна.

< , следовательно, коэффициент не является значимым. На основании выборочных данных нет оснований утверждать, что зависимость между ценой реализации Y и расположением руля Х 3 достоверна.

Таким образом, наиболее тесная и значимая зависимость наблюдается между ценой реализации Y и ценой нового автомобиля Х 1 ; фактор Х 1 является наиболее информативным.

По территориям Южного федерального округа РФ приводятся данные за 2011 год

Территории федерального округа

Валовой региональный продукт, млрд. руб., Y

Инвестиции в основной капитал, млрд. руб., X1

1. Респ. Адыгея

2. Респ. Дагестан

3. Респ. Ингушетия

4. Кабардино-БалкарскаяРесп.

5. Респ. Калмыкия

6. Карачаево-ЧеркесскаяРесп.

7. Респ. Северная Осетия - Алания

8. Краснодарский кра)

9. Ставропольский край

10. Астраханская обл.

11. Волгоградская обл.

12. Ростовская обл.

  • 1. Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость коэффициентов корреляции.
  • 2. Постройте поле корреляции результативного признака и наиболее тесно связанного с ним фактора.
  • 3. Рассчитайте параметры линейной парной регрессии для каждого фактора Х..
  • 4. Оцените качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Выберите лучшую модель.

составит 80% от его максимального значения. Представьте графически: фактические и модельные значения, точки прогноза.

  • 6. Используя пошаговую множественную регрессию (метод исключения или метод включения), постройте модель формирования цены квартиры за счёт значимых факторов. Дайте экономическую интерпретацию коэффициентов модели регрессии.
  • 7. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности,в - и -? коэффициентов.

При решении данной задачи расчеты и построение графиков и диаграмм будем вести с использованием настройки Excel Анализ данных.

1. Рассчитаем матрицу парных коэффициентов корреляции и оценим статистическую значимость коэффициентов корреляции

В диалоговом окне Корреляция в поле Входной интервал вводим диапазон ячеек, содержащих исходные данные. Так как мы выделили и заголовки столбцов, то устанавливаем флажок Метки в первой строке.

Получили следующие результаты:

Таблица 1.1 Матрица парных коэффициентов корреляции

Анализ матрицы коэффициентов парной корреляции показывает, что зависимая переменная Y, т.е валового регионального продукта имеет более тесную связь с Х1 (инвестиции в основной капитал). Коэффициент корреляции равен 0,936. Это означает, что на 93,6% зависимая переменная Y (валовой региональный продукт) зависит от показателя Х1 (инвестиции в основной капитал).

Статистическая значимость коэффициентов корреляции определим с помощью t-критерия Стьюдента. Табличное значение сравниваем с расчетными значениями.

Вычислим табличное значение с помощью функции СТЬЮДРАСПОБР.

t табл.=0,129 при доверительной вероятности равной 0,9 и степенью свободы (n-2).

Статистическим значимым является фактор Х1.

2. Построим поле корреляции результативного признака (валового регионального продукта) и наиболее тесно связанного с ним фактора (инвестиции в основной капитал)

Для этого воспользуемся инструментом построения точечной диаграммы программы Excel.

В результате получаем поле корреляции цены валового регионального продукта, млрд. руб. и инвестиции в основной капитал, млрд. руб. (рисунок 1.1.).

Рисунок 1.1

3. Рассчитаем параметры линейной парной регрессии для каждого фактора Х

Для расчета параметров линейной парной регрессии воспользуемся инструментом Регрессия, входящим в настойку Анализ данных.

В диалоговом окне Регрессия в поле Входной интервал Y вводим адрес диапазона ячеек, которые представляет зависимую переменную. В поле

Входной интервал Х вводим адрес диапазона, который содержит значения независимых переменных. Выполним вычисления параметры парной регрессии для фактора Х.

Для Х1 получили следующие данные, представленные в таблице 1.2:

Таблица 1.2

Уравнение регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал имеет вид:

4. Оценим качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Установим, какая модель является лучшей.

Коэффициент детерминации, среднюю ошибку аппроксимации мы получили в результате расчетов, проведенных в пункте 3. Полученные данные представлены в следующих таблицах:

Данные по Х1:

Таблица 1.3а

Таблица 1.4б

А) Коэффициент детерминации определяет, какая доля вариации признака У учтена в модели и обусловлена влиянием на него фактора Х. Чем больше значение коэффициента детерминации, тем теснее связь между признаками в построенной математической модели.

В программе Excel обозначается R-квадрат.

Исходя из данного критерия наиболее адекватной является модель уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

Б) Среднюю ошибку аппроксимации рассчитаем по формуле:

где числитель - сумма квадратов отклонения расчетных значений от фактических. В таблицах она находится в столбце SS, строке Остатки.

Среднее значение цены квартиры рассчитаем в Excel с помощью функции СРЗНАЧ. = 24,18182 млрд. руб.

При проведении экономических расчетов модель считается достаточно точной, если средняя ошибка аппроксимации меньше 5%, модель считается приемлемой, если средняя ошибка аппроксимации меньше 15%.

По данному критерию, наиболее адекватной является математическая модель для уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

В) Для проверки значимости модели регрессии используется F-тест. Для этого выполняется сравнение и критического (табличного)значений F-критерия Фишера.

Расчетные значения приведены в таблицах 1.4б (обозначены буквой F).

Табличное значение F-критерий Фишера рассчитаем в Excel с помощью функции FРАСПОБР. Вероятность возьмем равной 0,05. Получили: = 4,75

Расчетные значения F-критерий Фишера для каждого фактора сравним с табличным значением:

71,02 > = 4,75 модель по данному критерию адекватна.

Проанализировав данные по всем трем критериям, можно сделать вывод, что наиболее лучшей является математическая модель, построена для фактора валового регионального продукта, которая описана линейным уравнением

5. Для выбранной модели зависимости цены валового регионального продукта

осуществим прогнозирование среднего значения показателя при уровне значимости, если прогнозное значения фактора составит 80% от его максимального значения. Представим графически: фактические и модельные значения, точки прогноза.

Рассчитаем прогнозное значение Х, по условию оно составит 80% от максимального значения.

Рассчитаем Х max в Excel с помощью функции МАКС.

0,8 *52,8 = 42,24

Для получения прогнозных оценок зависимой переменной подставим полученное значение независимой переменной в линейное уравнение:

5,07+2,14*42,24 = 304,55 млрд. руб.

Определим доверительный интервал прогноза, который будет иметь следующие границы:

Для вычисления доверительного интервала для прогнозного значения рассчитываем величину отклонения от линии регрессии.

Для модели парной регрессии величина отклонения рассчитывается:

т.е. значение стандартной ошибки из таблицы 1.5а.

(Так как число степеней свободы равно единицы, то знаменатель будет равен n-2). корреляция парная регрессия прогноз

Для расчета коэффициента воспользуемся функцией Excel СТЬЮДРАСПОБР, вероятность возьмем равную 0,1, число степеней свободы 38.

Значение рассчитаем с помощью Excel, получим 12294.


Определим верхнюю и нижнюю границы интервала.

  • 304,55+27,472= 332,022
  • 304,55-27,472= 277,078

Таким образом, прогнозное значение = 304,55 тыс.долл., будет находиться между нижней границей, равной 277,078 тыс.долл. и верхней границей, равной 332,022 млдр. Руб.

Фактические и модельные значения, точки прогноза представлены графически на рисунке 1.2.


Рисунок 1.2

6. Используя пошаговую множественную регрессию (метод исключения), построим модель формирования цены валового регионального продукта за счёт значимых факторов

Для построения множественной регрессии воспользуемся функцией Регрессия программы Excel, включив в нее все факторы. В результате получаем результативные таблицы, из которых нам необходим t-критерий Стьюдента.

Таблица 1.8а

Таблица 1.8б

Таблица 1.8в.

Получаем модель вида:

Поскольку < (4,75 < 71,024), уравнение регрессии следует признать адекватным.

Выберем наименьшее по модулю значение t-критерия Стьюдента, оно равно 8,427, сравниваем его с табличным значением, которые рассчитываем в Excel, уровень значимости берем равным 0,10, число степеней свободы n-m-1=12-4=8: =1,8595

Поскольку 8,427>1,8595 модель следует признать адекватной.

7. Для оценки значимого фактора полученной математической модели, рассчитаем коэффициенты эластичности, и - коэффициенты

Коэффициент эластичности показывает, насколько процентов изменится результативный признак при изменении факторного признака на 1%:

Э X4 = 2,137 *(10,69/24,182) = 0,94%

То есть с ростом инвестиции в основной капитал 1% стоимость в среднем возрастает на 0,94%.

Коэффициент показывает на какую часть величины среднего квадратического отклонения меняется среднее значение зависимой переменной с изменением независимой переменной на одно среднеквадратическое отклонение.

2,137* (14.736/33,632) = 0,936.

Данные средних квадратических отклонений взяты из таблиц, полученных с помощью инструменты Описательная статистика.

Таблица 1.11 Описательная статистика (Y)

Таблица 1.12 Описательная статистика (Х4)

Коэффициент определяет долю влияния фактора в суммарном влиянии всех факторов:

Для расчета коэффициентов парной корреляции вычисляем матрицу парных коэффициентов корреляции в программе Excel с помощью инструмента Корреляция настройки Анализа данных.

Таблица 1.14

(0,93633*0,93626) / 0,87 = 1,00.

Вывод: Из полученных расчетов можно сделать вывод, что результативный признак Y (валовой региональный продукт) имеет большую зависимость от фактора X1 (инвестиции в основной капитал) (на 100%).

Список литературы

  • 1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. Учебное пособие. 2-е изд. - М.: Дело, 1998. - с. 69 - 74.
  • 2. Практикум по эконометрике: Учебное пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др. 2002. - с. 49 - 105.
  • 3. Доугерти К. Введение в эконометрику: Пер. с англ. - М.: ИНФРА-М, 1999. - XIV, с. 262 - 285.
  • 4. Айвызян С.А., Михтирян В.С. Прикладная математика и основы эконометрики. -1998., с 115-147 .
  • 5. Кремер Н.Ш., Путко Б.А. Эконометрика. -2007. с 175-251.

Первоначально в модель у включают все главные компоненты (в скобках указаны расчетные значения t -критерия):

Качество модели характеризуют: множественный коэффициент детерминации r = 0,517, средняя относительная ошибка аппроксимации = 10,4%, остаточная дисперсия s 2 = 1,79 и F набл = 121. Ввиду того что F набл > F кр =2,85 при α = 0,05, v 1 = 6, v 2 = 14, уравнение регрессии значимо и хотя бы один из коэффициентов регрессии - β 1 , β 2 , β 3 , β 4 - не равен нулю.

Если значимость уравнения регрессии (гипотеза Н 0: β 1 = β 2 = β 3 = β 4 = 0проверялась при α = 0,05, то значимость коэффициентов регрессии, т.е. гипотезы H 0: β j = 0 (j = 1, 2, 3, 4), следует проверять при уровне значимости, большем, чем 0,05, например при α = 0,1. Тогда при α = 0,1, v = 14 величина t кр = 1,76, и значимыми, как следует из уравнения (53.41), являются коэффициенты регрессии β 1 , β 2 , β 3 .

Учитывая, что главные компоненты не коррелированы между собой, можно сразу исключить из уравнения все незначимые коэффициенты, и уравнение примет вид

(53.42)

Сравнив уравнения (53.41) и (53.42), видим, что исключение незначимых главных компонент f 4 и f 5 , не отразилось на значениях коэффициентов уравнения b 0 = 9,52, b 1 = 0,93, b 2 = 0,66 и соответствующих t j (j = 0, 1, 2, 3).

Это обусловлено некоррелированностью главных компонент. Здесь интересна параллель уравнений регрессии по исходным показателям (53.22), (53.23) и главным компонентам (53.41), (53.42).

Уравнение (53.42) значимо, поскольку F набл = 194 > F кр = 3,01, найденного при α = 0,05, v 1 = 4, v 2 = 16. Значимы и коэффициенты уравнения, так как t j > t кр . = 1,746, соответствующего α = 0,01, v = 16 для j = 0, 1, 2, 3. Коэффициент детерминации r = 0,486 свидетельствует о том, что 48,6% вариации у обусловлено влияниемтрех первых главных компонент.

Уравнение (53.42) характеризуется средней относительной ошибкой аппроксимации = 9,99% и остаточной дисперсией s 2 = 1,91.

Уравнение регрессии на главных компонентах (53.42) обладает несколько лучшими аппроксимирующими свойствами по сравнению с регрессионной моделью (53.23) по исходным показателям: r = 0,486 > r = 0,469; = 9,99% < (х ) = 10,5% и s 2 (f) = 1,91 < s 2 (x) = 1,97. Кроме того, в уравнении (53.42) главные компоненты являются линейными функциями всех исходных показателей, в то время как в уравнение (53.23) входят только две переменные (x 1 и х 4 ). В ряде случаев приходится учитывать, что модель (53.42) трудноинтерпретируема, так как в нее входит третья главная компонента f 3 , которая нами не интерпретирована и вклад которой в суммарную дисперсию исходных показателей (x 1 , ..., х 5) составляет всего 8,6%. Однако исключение f 3 из уравнения (53.42) значительно ухудшает аппроксимирующие свойства модели: r = 0,349; = 12,4% и s 2 (f ) = 2,41. Тогда в качестве регрессионной модели урожайности целесообразно выбрать уравнение (53.23).

Кластерный анализ

В статистических исследованиях группировка первичных данных является основным приемом решения задачи классификации, а поэтому и основой всей дальнейшей работы с собранной информацией.

Традиционно эта задача решается следующим образом. Из множества признаков, описывающих объект, отбирается один, наиболее информативный, с точки зрения исследователя, и производится группировка данных в соответствии со значениями этого признака. Если требуется провести классификацию по нескольким признакам, ранжированным между собой по степени важности, то сначала осуществляется классификация по первому признаку, затем каждый из полученных классов разбивается на подклассы по второму признаку и т.д. Подобным образом строится большинство комбинационных статистических группировок.

В тех случаях, когда не представляется возможным упорядочить классификационные признаки, применяется наиболее простой метод многомерной группировки - создание интегрального показателя (индекса), функционально зависящего от исходных признаков, с последующей классификацией по этому показателю.

Развитием этого подхода является вариант классификации по нескольким обобщающим показателям (главным компонентам), полученным с помощью методов факторного или компонентного анализа.

При наличии нескольких признаков (исходных или обобщенных) задача классификации может быть решена методами кластерного анализа, которые отличаются от других методов многомерной классификации отсутствием обучающих выборок, т.е. априорной информации о распределении генеральной совокупности.

Различия между схемами решения задачи по классификации во многом определяются тем, что понимают под понятиями «сходство» и «степень сходства».

После того как сформулирована цель работы, естественно попытаться определить критерии качества, целевую функцию, значения которой позволят сопоставить различные схемы классификации.

В экономических исследованиях целевая функция, как правило, должна минимизировать некоторый параметр, определенный на множестве объектов (например, целью классификации оборудования может явиться группировка, минимизирующая совокупность затрат времени и средств на ремонтные работы).

В случаях когда формализовать цель задачи не удается, критерием качества классификации может служить возможность содержательной интерпретации найденных групп.

Рассмотрим следующую задачу. Пусть исследуется совокупность п объектов, каждый из которых характеризуется k измеренными признаками. Требуется разбить эту совокупность на однородные в некотором смысле группы (классы). При этом практически отсутствует априорная информация о характере распределения k -мерного вектора Х внутри классов.

Полученные в результате разбиения группы обычно называются кластерами* (таксонами**, образами), методы их нахождения - кластер-анализом (соответственно численной таксономией или распознаванием образов с самообучением).

* Clаster (англ.) - группа элементов, характеризуемых каким-либо общимсвойством.

**Тахоп (англ.) - систематизированная группа любой категории.

Необходимо с самого начала четко представлять, какая из двух задач классификации подлежит решению. Если решается обычная задача типизации, то совокупность наблюдений разбивают на сравнительно небольшое число областей группирования (например, интервальный вариационный ряд в случае одномерных наблюдений) так, чтобы элементы одной такой области находились друг от друга по возможности на небольшом расстоянии.

Решение другой задачи заключается в определении естественного расслоения результатов наблюдений на четко выраженные кластеры, лежащие друг от друга на некотором расстоянии.

Если первая задача типизации всегда имеет решение, то во втором случае может оказаться, что множество наблюдений не обнаруживает естественного расслоения на кластеры, т.е. образует один кластер.

Хотя многие методы кластерного анализа довольно элементарны, основная часть работ, в которых они были предложены, относится к последнему десятилетию. Это объясняется тем, что эффективное решение задач поиска кластеров, требующее выполнения большого числа арифметических и логических операций, стало возможным только с возникновением и развитием вычислительной техники.

Обычной формой представления исходных данных в задачах кластерного анализа служит матрица

каждая строка которой представляет результаты измерений k рассматриваемых признаков у одного из обследованных объектов. В конкретных ситуациях может представлять интерес как группировка объектов, так и группировка признаков. В тех случаях, когда разница между двумя этими задачами не существенна, например при описании некоторых алгоритмов, мы будем пользоваться только термином «объект», включая в это понятие и термин «признак».

Матрица Х не является единственным способом представления данных в задачах кластерного анализа. Иногда исходная информация задана в виде квадратной матрицы

элемент r ij которой определяет степень близости i -го объекта к j -му.

Большинство алгоритмов кластерного анализа полностью исходит из матрицы расстояний (или близостей) либо требует вычисления отдельных ее элементов, поэтому если данные представлены в форме X, то первым этапом решения задачи поиска кластеров будет выбор способа вычисления расстояний, или близости, между объектами или признаками.

Несколько проще решается вопрос об определении близости между признаками. Как правило, кластерный анализ признаков преследует те же цели, что и факторный анализ: выделение групп связанных между собой признаков, отражающих определенную сторону изучаемых объектов. Мерой близости в этом случае служат различные статистические коэффициенты связи.


Похожая информация.