Стратегия повышения энергоэффективности в муниципальных образованиях. Презентация на тему "централизованная и децентрализованная система теплоснабжения"

05.03.2019

Слайд 2

Централизованная система теплоснабжения

Слайд 3

Централизованное теплоснабжение характеризуется наличием обширной разветвлённой абонентской теплосети с запитыванием многочисленных теплоприемников (заводы, предприятия, здания, квартиры, жилые помещения и т.д.)

Основными источниками для централизованного теплоснабжения являются: теплоэлектроцентрали (ТЭЦ), которые также попутно вырабатывают и электроэнергию; котельные (водогрейные и паровые).

Слайд 4

Структура централизованного теплоснабжения

Центральная система отопления в составе включает несколько элементов: Источник носителя тепла. Это тепловая электрическая централь, которая занимается производством тепла и электроэнергии. Источник транспортирования тепла – тепловые сети. Источник потребления тепла. Это отопительные приборы, размещенные в домах, офисах, на складах и в других помещениях различных видов.

Слайд 5

Схемы системы теплоснабжения

Зависимая схема системы отопления– система центрального отопления предназначена для работы на перегретой воде. Стоимость ее ниже стоимости независимой схемы, благодаря исключению таких элементов, как теплообменники, расширительный бак и подпиточный насос, функции которых выполняются централизованно на тепловой станции. Перегретая вода из магистральной внешней теплосети смешивается с обратной водой (t=70-750С) внутридомовой системы отопления и в результате вода необходимой температуры, подается в отопительные приборы. При таком подключении внутридомовые тепловые пункты, как правило, оснащаются смесительными установками (элеваторами). Недостатком зависимой схемы присоединения со смешением является незащищенность системы от повышения в ней гидростатического давления, непосредственно передающе­гося через обратный теплопровод, до значения, опасного для целостности отопительных приборов и арматуры.

Слайд 6

Слайд 7

Независимая схема системы отопления(теплообменник) – перегретая вода из котла подается в теплообменник. Теплообменник(водонагреватель) - это устройство, в котором нагрев холодной воды до нужной температуры и предназначенной для отопления здания, происходит за счет перегретой воды котельной.Независимую схему присоединения применяют, когда в системе не допускается повыше­ние гидростатического давления. Преимуществом независимой схемы, кроме обеспечения теплогидравлического режима, индивидуального для каждого здания, является возможность сохранения циркуляции с использованием теплосодержания воды в течение некоторого времени, обычно достаточ­ного для устранения аварийного повреждения наружных теплопроводов. Система отопле­ния при независимой схеме служит дольше, чем система с местной котельной, вследствие уменьшения коррозионной активности воды.

Слайд 8

Слайд 9

Виды подключений:

Однотрубные системы отопления многоквартирных домов в силу своей экономии имеют множество недостатков, и главным из них является большая теплопотеря по ходу следования. То есть, вода в таком контуре подаётся снизу вверх, в каждой квартире попадая в радиаторы и отдавая тепло, ведь охлаждённая в приборе вода возвращается в ту же трубу. К конечному пункту теплоноситель доходит уже изрядно остывшим.

Слайд 10

Слайд 11

Схема подключения радиаторов однотрубной системы отопления

  • Слайд 12

    Двухтрубная система отопления в многоквартирном доме может быть открытой и закрытой, но она позволяет сохранять теплоноситель в оном температурном режиме для радиаторов любого уровня. В двухтрубном контуре отопления остывшая вода из радиатора уже не возвращается в ту же трубу, а отводится в возвратный канал или в «обратку». Причём, совершенно не имеет значения, подключен ли радиатор со стояка или с лежака – главное, что температура теплоносителя остаётся неизменной на всём пути его следования по трубе подачи. Немаловажным преимуществом в двухтрубном контуре является тот факт, что вы можете регулировать отдельно каждую батарею и даже установить на ней краны с термостатом для автоматического поддержания температурного режима. Также в таком контуре вы можете использовать приборы с боковым и нижним подключением, использовать тупиковое и попутное движение теплоносителя.

    Слайд 13

    Схема подключения радиаторов двухтрубной системы отопления

  • Слайд 14

    Преимущества централизованного теплоснабжения:

    вывод взрывоопасного технологического оборудования из жилых домов; точечная концентрация вредных выбросов на источниках, где с ними можно эффективно бороться; Возможность использовать дешевое топливо, работа на разных видах топлива, включая местное, мусоре, а также возобновляемых энергоресурсах; возможность замещать простое сжигание топлива (при температуре 1500-2000 °С для подогрева воздуха до 20 °С) тепловыми отходами производственных циклов, в первую очередь теплового цикла производства электроэнергии на ТЭЦ; относительно гораздо более высокий электрический КПД крупных ТЭЦ и тепловой КПД крупных котельных работающих на твердом топливе. Простота в использовании. Вам не нужно следить за оборудованием – радиаторы центрального отопления всегда выдают стабильную температуру (вне зависимости от погодных условий

    Слайд 15

    Недостатки централизованного теплоснабжения:

    Огромное количество потребителей тепла, которые имеют свой режим теплоснабжения, что практически полностью исключает возможность регулирования теплоподачи; Удельная стоимость системы ЦТ, которая в свою очередь зависит от плотности нагрузки Завышение стоимости тепла в некоторых городах; Сложный, дорогой, забюрократизированный порядок подключения к ЦТ; Отсутствие возможности регулирования объемов потребления; Невозможность жителям самостоятельно регулировать включение и отключение отопления; Длительный срок летних отключений ГВС. Тепловые сети в большинстве городов изношены, тепловые потери в них превышают нормативные.

    Слайд 16

    Децентрализованная система теплоснабжения

  • Слайд 17

    Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует.

    Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы Децентрализованное отопление отличается от централизованного отопления локальным распределением производимого тепла

    Слайд 18

    Основные виды децентрализованного отопления

    Электрическое Прямое Аккумуляционное Теплонасосное Печное Малые котельные

    Слайд 19

    Печное Малая котельная

    Слайд 20

    Виды систем с вовлечением нетрадиционной энергетики:

    теплоснабжение на базе тепловых насосов; теплоснабжение на базе автономных водяных теплогенераторов.

    Слайд 21

    ТЕПЛОВЫЕ НАСОСЫ ДЛЯ ОТОПЛЕНИЯ могут размещаться

    В скважинных коллекторах, которые устанавливаются вертикально в грунт на глубину до 100 м В подземных горизонтальных коллекторах

    Слайд 22

    Принцип действия

    Тепловая энергия поступает на теплообменник, нагревая теплоноситель (воду) системы отопления. Отдавая тепло, хладагент остывает, и с помощью расширительного клапана вновь переводится в жидкое состояние. Цикл замыкается. Для «извлечения» тепла из земли используется хладагент - газ с низкой температурой кипения. Хладагент в жидком состоянии проходит по системе труб, закопанных в землю. Температура земли на глубине более 1,5 метров одинакова летом и зимой и равна 8 градусам. Такой температуры хватает, чтобы проходящий в земле хладагент "закипел" и перешел в газообразное состояние. Этот газ всасывается компрессорным насосом, в этот момент происходит его сжатие и выделение тепла. Тоже самое происходит когда велосипедным насосом накачивают шину – от резкого сжатия воздуха насос становится теплым.

    Слайд 23

    Автономные водяные теплогенераторы

    Бестопливныетеплогенераторы основаны на принципе кавитации. Электричество в этом случае нужно для работы электродвигателя насоса, а накипь не образовывается вовсе. Кавитационные процессы в теплоносителе возникают в результате механического воздействия на жидкость в замкнутом объеме, что неизбежно приводит к ее нагреву. Современные установки имеют в контуре кавитатор, т.е. нагрев жидкости осуществляется за счет многократной циркуляции по контуру «насос – кавитатор – емкость (радиатор) – насос». Включением в схему установки кавитатора удается увеличить срок службы насоса благодаря переносу кавитационных процессов из рабочей камеры насоса в полость кавитатора. Кроме того данный узел является основным источником нагрева, поскольку именно в нем происходит преобразование кинетической энергии движущейся жидкости в тепловую.

    Слайд 24

    Основной насос Кавитатор Циркуляционный насос Клапан электромагнитный Вентиль Расширительный бак Радиатор отопления

    Слайд 25

    Другие технологии энергосбережения

    Индивидуальные системы отопления Конвекторное отопление (газовые воздухонагреватели, включающие горелку, теплообменник и вентилятор) Газо-лучистое отопление («светлые» и «темные» инфракрасные обогреватели)

    Слайд 26

    Наиболее распространенная схема автономного (децентрализованного) теплоснабжения включает в себя: одноконтурный или двухконтурный котел, циркуляционные насосы для отопления и горячего водоснабжения, обратные клапаны, закрытые расширительные баки, предохранительные клапаны. При одноконтурном котле для приготовления горячего водоснабжения применяется емкостной или пластинчатый теплообменник.

    Слайд 27

    Поквартирное отопление

    Поквартирное отопление - децентрализованное (автономное) индивидуальное обеспечение отдельной квартиры в многоквартирном доме теплом и горячей водой

    Слайд 28

    Двухконтурные настенные котлы обеспечивают, наряду с отоплением, приготовление горячей воды для бытовых нужд. Благодаря малым габаритам, ненамного превышающим размеры обычной газовой колонки, для котла нетрудно найти место в любом помещении, даже специально не приспособленном под котельную: на кухне, в коридоре, прихожей и т.д. Индивидуальные системы отопления позволяют полностью решить проблему экономии газового топлива, при этом каждый житель, используя возможности установленного оборудования, создает себе комфортные условия проживания. Внедрение системы поквартирного отопления сразу исключает проблему учета тепла: учитывается не тепло, а только расход газа. В стоимости же газа отражаются составляющие тепла и горячей воды.

    Слайд 29

    Воздушное отоплении и вентиляция

  • Слайд 30

    Газо-лучистое отопление

    Для организации лучистого отопления в верхней части помещения (под потолком) размещаются инфракрасные излучатели, обогреваемые изнутри продуктами сгорания газа. При применении СГЛО тепло передается от излучателей непосредственно в рабочую зону тепловым инфракрасным излучением. Подобно солнечным лучам, оно практически целиком доходит до рабочей зоны, обогревая персонал, поверхность рабочих мест, пола, стен. А уже от этих теплых поверхностей происходит нагрев воздуха в помещении. Главным результатом лучистого инфракрасного отопления является возможность значительного снижения средней температуры воздуха в помещении без ухудшения условий труда. Средняя температура в помещении может быть снижена на 7оС, обеспечивая только за счет этого экономию до 45% по сравнению с традиционными конвектными системами.

    Слайд 31

    Преимущества децентрализованной системы теплоснабжения:

    снижение потерь тепла из-за отсутствия внешних тепловых сетей, сведение к минимуму потерь сетевой воды, снижение затрат на водоподготовку; отсутствие необходимости землеотводов под тепловые сети и котельные; полная автоматизация, в том числе и режимов теплопотребления (не нужен контроль температуры обратной сетевой воды, теплопроизводительности источника и т.д.); гибкость в управлении заданной температурой непосредственно в рабочей зоне; прямые затраты на отопление и эксплуатационные расходы на содержание системы ниже; экономичность в расходовании тепла.

    Слайд 32

    Недостатки децентрализованной системы теплоснабжения:

    Халатность пользователей. Любая система требует периодического профилактического осмотра и обслуживания Проблема дымоудаления. Необходимость создания качественной вентиляционной системы и отрицательное воздействие на окружающую среду. Снижение эффективности работы системы из-за неотапливаемых соседних помещений. При поквартирном теплоснабжении в многоэтажном здании необходимо организационно-техническое решение вопроса отопления лестничных клеток и других мест общественного пользованияотсутствие внятного собственника, т.к. котельная является коллективной собственностью жителей; Не начисление амортизации и длительной срок сбора средств на необходимые крупные ремонты; Отсутствие системы быстрой поставки запасных частей.

    бифилярный теплоснабжение централизованный теплосеть

    Трубопроводы тепловых сетей прокладываются в подземных проходных и непроходных каналах - 84%, бесканальная подземная прокладка - 6% и надземная (на эстакадах) - 10%. В среднем по стране свыше 12% тепловых сетей периодически или постоянно затапливаются грунтовыми или поверхностными водами, в отдельных городах эта цифра может достигать 70% теплотрасс. Неудовлетворительное состояние тепловой и гидравлической изоляции трубопроводов, износ и низкое качество монтажа и эксплуатации оборудования тепловых сетей отражается статистическими данными по аварийности. Так, 90% аварийных отказов приходится на подающие и 10% - на обратные трубопроводы, из них 65% аварий происходит из-за наружной коррозии и 15% - из-за дефектов монтажа (преимущественно разрывов сварных швов).

    На этом фоне всё увереннее позиции децентрализованного теплоснабжения, к которому следует отнести как поквартирные системы отопления и горячего водоснабжения, так и домовые, включая многоэтажные здания с крышной или пристроенной автономной котельной. Использование децентрализации позволяет лучше адаптировать систему теплоснабжения к условиям потребления теплоты конкретного, обслуживаемого ей объекта, а отсутствие внешних распределительных сетей практически исключает непроизводственные потери теплоты при транспорте теплоносителя. Повышенный интерес к автономным источникам теплоты (и системам) в последние годы в значительной степени обусловлен финансовым состоянием и инвестиционно-кредитной политикой в стране, так как строительство централизованной системы теплоснабжения требует от инвестора значительных единовременных капитальных вложений в источник, тепловые сети и внутренние системы здания, причем с неопределенными сроком окупаемости или практически на безвозвратной основе. При децентрализации возможно достичь не только снижения капитальных вложений за счет отсутствия тепловых сетей, но и переложить расходы на стоимость жилья (т.е. на потребителя). Именно этот фактор в последнее время и обусловил повышенный интерес к децентрализованным системам теплоснабжения для объектов нового строительства жилья. Организация автономного теплоснабжения позволяет осуществить реконструкцию объектов в городских районах старой и плотной застройки при отсутствии свободных мощностей в централизованных системах. Децентрализация на современном уровне, базирующаяся на высокоэффективных теплогенераторах последних поколений (включая конденсационные котлы), с использованием энергосберегающих систем автоматического управления позволяет в полной мере удовлетворить запросы самого требовательного потребителя.

    Перечисленные факторы, в пользу децентрализации теплоснабжения привели к тому, что часто оно уже стало рассматриваться как безальтернативное техническое решение лишенное недостатков.

    Важным преимуществом децентрализованных систем является возможность местного регулирования в системах квартирного отопления и горячего водоснабжения. Однако, эксплуатация источника теплоты и всего комплекса вспомогательного оборудования квартирной системы теплоснабжения непрофессиональным персоналом (жильцами) не всегда дает возможность в полной мере использовать это преимущество. Также необходимо учитывать, что в любом случае требуется создание, или привлечение, ремонтно-эксплуатационной организации для обслуживания источников теплоснабжения.

    Рациональной можно признать децентрализацию только на основе газообразного (природный газ) или легкого дистиллятного жидкого топлива (дизтопливо, топливо печное бытовое). Другие энергоносители:

    Твердое топливо в многоэтажной застройке. По ряду очевидных причин нереализуемая задача. В малоэтажной застройке, как показывают многие исследования на низкосортном рядовом твердом топливе (а сейчас другого в стране практически нет) экономически целесообразно строить групповую котельную;

    Сжиженный газ (пропан-бутановые смеси) для районов с большим потреблением тепла на цели отопления, даже в комплексе с энергосберегающими мероприятиями потребует строительства газохранилищ большой ёмкости (с обязательной установкой не менее двух подземных ёмкостей), что в комплексе вопросов с централизованной поставкой сжиженного газа существенно усложняет проблему;

    Электроэнергия не может и не должна использоваться на цели отопления (независимо от себестоимости и тарифов) в силу эффективности её выработки по первичной энергии для конечного потребителя (КПД30%) за исключением систем временного, аварийного, локального отопления (местного) и в районах её избытков, в ряде случаев использования альтернативных источников энергии (тепловые насосы). В этой же связи необходимо отмежеваться от безответственных заявлений в печати ряда разработчиков и производителей так называемых вихревых теплогенераторов, декларирующих тепловую эффективность устройств, работающих на вязкостной диссипации механической энергии (от электродвигателя) в 1,25 раза превосходящую установленную мощность электрооборудования.

    Установочная мощность источников теплоты при поквартирном теплоснабжении в многоэтажном здании рассчитывается по максимуму (пику) теплопотребления, т.е. по нагрузке горячего водоснабжения. Нетрудно видеть, что в этом случае для двухсот квартирного жилого здания установленная мощность теплогенераторов составит 4,8 МВт, что более чем в два раза превышает необходимую суммарную мощность теплоснабжения при подключении к центральным тепловым сетям или к автономной, например, крышной котельной. Установка емкостных водонагревателей в системе горячего водоснабжения квартиры (емкость 100-150 литров) позволяет снизить установленную мощность поквартирных теплогенераторов, однако существенно усложняет квартирную систему теплоснабжения, значительно увеличивает её стоимость и практически не применяется в многоэтажных зданиях.

    Автономные источники теплоснабжения (в том числе и поквартирные) имеют рассредоточенный в жилом районе выброс продуктов сгорания при относительно низкой высоте дымовых труб, что оказывает существенное влияние на экологическую обстановку, загрязняя воздух непосредственно в селитебной зоне.

    Существенно меньше проблем возникает при разработке децентрализованных систем теплоснабжения от автономных (крышных), встроенных и пристроенных котельных отдельных объектов жилого, коммунально-бытового и промышленного назначения, в том числе и типовых сооружений. Достаточно чёткая нормативная документация позволяет технически обосновать эффективное решение вопросов размещения оборудования, топливоснабжения, дымоудаления, электроснабжения и автоматизации автономного источника теплоты. Не встречает особых трудностей и разработка инженерных систем здания, включая типовые, по своей конструкции

    Таким образом, автономное теплоснабжение не должно рассматриваться как безусловная альтернатива централизованному теплоснабжению, или как отступление от завоёванных позиций. Технический уровень современного энергосберегающего оборудования по выработке, технологии транспорта и распределения теплоты позволяют создавать эффективные и рациональные инженерные системы, уровень централизации которых должен иметь соответствующее обоснование.

    Децентрализованные системы теплоснабжения

    Децентрализованные потребители, которые из-за больших расстояний от ТЭЦ не могут быть охвачены централизованным теплоснабжением, должны иметь рациональное (эффективное) теплоснабжение, отвечающее современному техническому уровню и комфортности.

    Масштабы потребления топлива на теплоснабжение весьма велики. В настоящее время теплоснабжение промышленных, общественных и жилых зданий осуществляется примерно на 40+50% от котельных, что является не эффективным из-за их низкого КПД (в котельных температура сгорания топлива составляет примерно 1500 ОС, а тепло потребителю выдается при существенно более низких температурах (60+100 ОС)).

    Таким образом, нерациональное использование топлива, когда часть тепла вылетает в трубу, приводит к истощению запасов топливно-энергетических ресурсов (ТЭР).

    Постепенное истощение запасов топливно-энергетических ресурсов в европейской части нашей страны потребовало в свое время развития топливно-энергетического комплекса в ее восточных районах, что резко увеличило затраты на добычу и транспорт топлива. В этой ситуации необходимо решить важнейшую задачу по экономии и рациональному использованию ТЭР, т.к. запасы их ограничены и по мере их уменьшения стоимость топлива будет неуклонно расти.

    В связи с этим эффективным энергосберегающим мероприятием является разработка и внедрение децентрализованных систем теплоснабжения с рассеянными автономными источниками тепла.

    В настоящее время наиболее целесообразным являются децентрализованные системы теплоснабжения, базирующиеся на нетрадиционных источниках тепла, таких как: солнце, ветер, вода.

    Ниже рассмотрим только два аспекта вовлечения нетрадиционной энергетики:

    • * теплоснабжение на базе тепловых насосов;
    • * теплоснабжение на базе автономных водяных теплогенераторов.

    Теплоснабжение на базе тепловых насосов. Основное назначение тепловых насосов (ТН) -отопление и горячее водоснабжение с использованием природных низкопотенциальных источников тепла (НПИТ) и сбросного тепла промышленного и коммунально-бытового сектора.

    К достоинствам децентрализованных тепловых систем относится повышенная надежность теплоснабжения, т.к. они не связаны тепловыми сетями, которые в нашей стране превышают 20 тыс. км, причем большая часть трубопроводов находится в эксплуатации сверх нормативного срока службы (25 лет), что приводит к авариям . Кроме этого, строительство протяженных теплотрасс сопряжено со значительными капитальными затратами и большими потерями тепла. Тепловые насосы по принципу действия относятся к трансформаторам тепла, в которых изменение потенциала тепла (температуры) происходит в результате подведенной извне работы .

    Энергетическая эффективность тепловых насосов оценивается коэффициентами трансформации, учитывающими полученный «эффект», отнесенный к затраченной работе и КПД.

    Полученный эффект - это количество тепла Qв, которое производит ТН. Количество тепла Qв, отнесенное к затраченной мощности Nэл на привод ТН, показывает, сколько единиц тепла получается на единицу затраченной электрической мощности. Это отношение м=0В/Нэлй

    называют коэффициентом преобразования или трансформации тепла, который для ТН всегда больше 1. Некоторые авторы называют этот коэффициент КПД, но коэффициент полезного действия не может быть больше 100%. Ошибка здесь в том, что тепло Qв (как неорганизованная форма энергии) делится на Nэл (электрическую, т.е. организованную энергию) .

    КПД же должен учитывать не просто количество энергии, а работоспособность данного количества энергии. Следовательно, КПД - это отношение работоспособностей (или эксергий) любых видов энергии :

    где: Еq - работоспособность (эксергия) тепла Qв; ЕN - работоспособность (эксергия) электрической энергии Nэл.

    Так как тепло всегда связано с температурой, при которой это тепло получается, то следовательно работоспособность (эксергия) тепла зависит от температурного уровня T и определяется:

    где ф - коэффициент работоспособности тепла (или «фактор Карно»):

    q=(Т-Тос)/Т=1-Тос/

    где Тос - температура окружающей среды.

    Для каждого теплового насоса эти показатели равны:

    1. Коэффициент трансформации тепла:

    м=qв/l=Qв/Nэл¦

    з=СВ(фт)В//=Й*(фт)В>

    Для реальных ТН коэффициент трансформации составляет м=3-!-4, в то время как з=30-40%. Это означает, что на каждый затраченный кВт.ч электрической энергии получается QB=3-i-4 кВт.ч тепла. Это является основным преимуществом ТН перед другими способами получения тепла (электрический нагрев, котельная и т.п.).

    За несколько последних десятков лет во всем мире резко возросло производство тепловых насосов, но в нашей стране ТН до настоящего времени не нашли широкого применения.

    Причин здесь несколько.

    • 1. Традиционная ориентация на централизованное теплоснабжение.
    • 2. Неблагоприятное соотношение между стоимостью электроэнергии и топлива.
    • 3. Изготовление ТН проводится, как правило, на базе наиболее близких по параметрам холодильных машин, что не всегда приводит к оптимальным характеристикам ТН. Проектирование серийных ТН на конкретные характеристики, принятое за рубежом, существенно повышает как эксплуатационные, так и энергетические характеристики ТН.

    Выпуск теплонасосного оборудования в США, Японии, ФРГ, Франции, Англии и других странах базируется на производственных мощностях холодильного машиностроения. ТН в этих странах применяются, в основном, для теплоснабжения и горячего водоснабжения жилищного, торгового и промышленного секторов.

    В США, например, эксплуатируется свыше 4 млн единиц тепловых насосов небольшой, до 20 кВт, производительности тепла на базе поршневых или ротационных компрессоров. Теплоснабжение школ, торговых центров, бассейнов осуществляется ТН теплопроизводительностью 40 кВт, выполняемыми на базе поршневых и винтовых компрессоров. Теплоснабжение районов, городов - крупными ТН на базе центробежных компрессоров с Qв свыше 400 кВт тепла. В Швеции из 130 тыс. работающих ТН более 100 -- теплопроизводительностью 10 МВт и более. В Стокгольме теплоснабжение на 50% производится от ТН.

    В промышленности тепловые насосы утилизируют низкопотенциальное тепло производственных процессов. Анализ возможности применения ТН в промышленности, проведенный на предприятиях 100 шведских компаний, показал, что наиболее подходящей сферой для применения ТН являются предприятия химической, пищевой и текстильной промышленности.

    В нашей стране вопросами применения ТН начали заниматься с 1926 г. . В промышленности с 1976 г. работали ТН на чайной фабрике (г. Самтредия, Грузия) , на Подольском химико-металлургическом заводе (ПХМЗ) с 1987 г. , на Сагареджойском молочном комбинате, Грузия, в подмосковном молочно-животноводческом совхозе «Горки-2» с 1963 г. Кроме промышленности ТН в то время начали применяться в торговом центре (г. Сухуми) для теплохладоснабжения, в жилом доме (пос. Бу-курия, Молдова), в пансионате «Дружба» (г. Ялта), климатологической больнице (г. Гагра), курортном зале Пицунды.

    В России в настоящее время ТН изготавливаются по индивидуальным заказам различными фирмами в Нижнем Новгороде, Новосибирске, Москве. Так, например, фирмой «Тритон» в Нижнем Новгороде выпускаются ТН теплопроизводительностью от 10 до 2000 кВт с мощностью компрессоров Nэл от 3 до 620 кВт.

    В качестве низкопотенциальных источников тепла (НПИТ) для ТН наибольшее распространение находит вода и воздух. Отсюда наиболее часто применяемыми схемами ТН являются «вода-воздух» и «воздух-воздух». По таким схемам ТН выпускают фирмы: «Сагriг«, «Lеnnох», Westinghous», «General Electrik» (США), «Нitachi», «Daikin» (Япония), «Sulzer» (Швеция), «ЧКД» (Чехия), «Klimatechnik» (Германия). В последнее время в качестве НПИТ используют сбросные промышленные и канализационные стоки.

    В странах с более суровыми климатическими условиями целесообразно применять ТН совместно с традиционными источниками тепла. При этом в отопительный период теплоснабжение зданий осуществляется преимущественно от теплового насоса (80-90% годового потребления), а пиковые нагрузки (при низких температурах) покрываются электрокотлами или котельными на органическом топливе.

    Применение тепловых насосов приводит к экономии органического топлива. Это особенно актуально для удаленных регионов, таких как северные районы Сибири, Приморья, где имеются гидроэлектростанции, а транспортировка топлива затруднена. При среднегодовом коэффициенте трансформации м=3-4 экономия топлива от применения ТН по сравнению с котельной составляет 30-5-40%, т.е. в среднем 6-5-8 кг у.т./ГДж. При увеличении м до 5, экономия топлива возрастает примерно до 20+25 кг у.т./ГДж по сравнению с котельными на органическом топливе и до 45+65 кгу.т./ГДж по сравнению с электрокотлами.

    Таким образом, ТН в 1,5-5-2,5 раза выгоднее котельных. Стоимость тепла от ТН примерно в 1,5 раза ниже стоимости тепла от централизованного теплоснабжения и в 2-5-3 раза ниже угольных и мазутных котельных.

    Одной из важнейших задач является утилизация тепла сбросной воды тепловых электростанций . Важнейшей предпосылкой внедрения ТН являются большие объемы тепла, выбрасываемые в градирни. Так, например, суммарная величина сбросного тепла на городских и прилегающих к Москве ТЭЦ в период с ноября по март отопительного сезона составляет 1600-5-2000 Гкал/ч. С помощью ТН можно передать большую часть этого сбросного тепла (около 50-5-60%) в теплосеть. При этом:

    • * на производство этого тепла не надо затрачивать дополнительное топливо;
    • * улучшилась бы экологическая обстановка;
    • * за счет снижения температуры циркуляционной воды в конденсаторах турбин существенно улучшится вакуум и повысится выработка электроэнергии.

    Масштабы внедрения ТН только в ОАО «Мосэнерго» могут быть весьма значительны и применение их на «сбросном» тепле гради-

    рен может достигать 1600-5-2000 Гкал/ч. Таким образом, применение ТН на ТЭЦ выгодно не только технологически (улучшение вакуума), но и экологически (реальная экономия топлива или повышение тепловой мощности ТЭЦ без дополнительных расходов топлива и капитальных затрат) . Все это позволит в тепловых сетях увеличить присоединенную нагрузку.

    Рис.1.

    1 - центробежный насос; 2 - вихревая труба; 3 - расходомер; 4 - термометр; 5 - трехходовой кран; 6 - вентиль; 7 - батарея; 8 - калорифер.

    Теплоснабжение на базе автономных водяных теплогенераторов. Автономные водяные теплогенераторы (АТГ) предназначены для получения нагретой воды, которая используется для теплоснабжения различных промышленных и гражданских объектов.

    АТГ включает в свой состав центробежный насос и специальное устройство, создающее гидравлическое сопротивление. Специальное устройство может иметь различную конструкцию, эффективность работы которой зависит от оптимизации режимных факторов, определяемых НОУ-ХАУ-разработками.

    Одним из вариантов специального гидравлического устройства является вихревая труба, включаемая в систему децентрализованного теплоснабжения, работающая на воде .

    Применение системы децентрализованного теплоснабжения весьма перспективно, т.к. вода, являясь рабочим веществом, используется непосредственно для отопления и горячего во-

    доснабжения, тем самым делая эти системы экологически чистыми и надежными в эксплуатации. Такая децентрализованная система теплоснабжения была смонтирована и испытана в лаборатории Основ трансформации тепла (ОТТ) кафедры Промышленных теплоэнергетических систем (ПТС) МЭИ.

    Система теплоснабжения состоит их центробежного насоса, вихревой трубы и стандартных элементов: батареи и калорифера. Указанные стандартные элементы являются неотъемлемыми частями любых систем теплоснабжения и поэтому их наличие и успешная работа дают основания утверждать о надежной работе любой системы теплоснабжения, включающей эти элементы.

    На рис. 1 представлена принципиальная схема системы теплоснабжения. Система заполнена водой, которая, нагреваясь, поступает в батарею и калорифер. Система снабжена переключающей арматурой (трехходовыми кранами и вентилями), которая позволяет осуществлять последовательное и параллельное включение батареи и калорифера.

    Работа системы осуществлялась следующим образом. Через расширительный бачок система заполняется водой таким образом, чтобы из системы был удален воздух, что затем контролируется по манометру. После этого на шкаф блока управления подается напряжение, задатчиком температуры устанавливается температура воды, подаваемой в систему (50-5-90 ОС), и включается центробежный насос. Время выхода на режим зависит от заданной температуры. При заданной tв=60 ОС время выхода на режим составляет t=40 мин. Температурный график работы системы представлен на рис. 2.

    Пусковой период системы составил 40+45 мин. Темп повышения температуры составил Q=1,5 град/мин.

    Для измерения температуры воды на входе и выходе из системы установлены термометры 4, а для определения расхода - расходомер 3.

    Центробежный насос был установлен на легкой передвижной подставке, изготовление которой можно осуществить в любой мастерской. Остальное оборудование (батарея и калорифер) стандартное, приобретаются в специализированных торговых фирмах (магазинах).

    Арматура (трехходовые краны, вентили, уголки, переходники и т.д.) также приобретаются в магазинах. Система смонтирована из пластиковых труб, сварка которых осуществлялась специальным сварочным агрегатом, который имеется в лаборатории ОТТ.

    Разность температур воды в прямой и обратной магистралях составила примерно 2 ОС (Дt=tnp-to6=1,6). Время работы центробежного насоса ВТГ составляло в каждом цикле 98 с, паузы длились по 82 с, время одного цикла равнялось 3 мин.

    Система теплоснабжения, как показали испытания, работает устойчиво и в автоматическом режиме (без участия обслуживающего персонала) поддерживает первоначально заданную температуру в интервале t=60-61 ОС.

    Система теплоснабжения работала при последовательном по воде включении батареи и калорифера.

    Эффективность системы оценивается:

    1. Коэффициентом трансформации тепла

    м=(П6+Пк)/нн=УП/нн;

    Из энергетического баланса системы видно, что дополнительное количество теплоты, выработанное системой, составляло 2096,8 ккал. На сегодняшний день существуют различные гипотезы, пытающиеся объяснить, как появляется дополнительное количество теплоты, но однозначного общепризнанного решения нет.

    Выводы

    децентрализованный теплоснабжение нетрадиционный энергетика

    • 1. Децентрализованные системы теплоснабжения не требуют протяженных теплотрасс, а следовательно - больших капитальных затрат.
    • 2. Использование децентрализованных систем теплоснабжения позволяет существенно сократить вредные выбросы от сгорания топлива в атмосферу, что улучшает экологическую обстановку.
    • 3. Использование тепловых насосов в системах децентрализованного теплоснабжения для объектов промышленного и гражданского секторов позволяет по сравнению с котельными экономить топливо в количестве 6+8 кг у.т. на 1 Гкал выработанного тепла, что составляет примерно 30-5-40%.
    • 4. Децентрализованные системы на базе ТН успешно применяются во многих зарубежных странах (США, Япония, Норвегия, Швеция и др.). Изготовлением ТН занимаются более 30 фирм.
    • 5. В лаборатории ОТТ кафедры ПТС МЭИ смонтирована автономная (децентрализованная) система теплоснабжения на базе центробежного водяного теплогенератора.

    Система работает в автоматическом режиме, поддерживая температуру воды в подающей магистрали в любом заданном интервале от 60 до 90 ОС.

    Коэффициент трансформации тепла системы составляет м=1,5-5-2, а КПД равен около 25%.

    6. Дальнейшее повышение энергетической эффективности децентрализованных систем теплоснабжения требует проведения научно-технических исследований с целью определения оптимальных режимов работы.

    Литература

    • 1. Соколов Е. Я. и др. Прохладное отношение к теплу. Известия от 17.06.1987.
    • 2. Михельсон В. А. О динамическом отоплении. Прикладная физика. Т.III, вып. З-4, 1926.
    • 3. Янтовский Е.И., Пустовалов Ю.В. Парокомпрессионные теплонасосные установки. - М.: Энергоиздат, 1982.
    • 4. Везиришвили О.Ш., Меладзе Н. В. Энергосберегающие теплонасосные системы тепло- и хладоснабжения. - М.: Издательство МЭИ, 1994.
    • 5. Мартынов А. В., Петраков Г. Н. Двухцелевой тепловой насос. Промышленная энергетика № 12, 1994.
    • 6. Мартынов А. В., Яворовский Ю. В. Использование ВЭР на предприятиях химической промышленности на базе ТНУ. Химическая промышленность
    • 7. Бродянский В.М. и др. Эксергетический метод и его приложения. - М.: Энергоиздат, 1986.
    • 8. Соколов Е.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения - М.: Энергоиздат, 1981.
    • 9. Мартынов А.В. Установки для трансформации тепла и охлаждения. - М.: Энергоатомиздат, 1989.
    • 10. ДевянинД.Н., ПищиковС.И., Соколов Ю.Н. Тепловые насосы - разработка и испытание на ТЭЦ-28. // «Новости теплоснабжения», № 1, 2000.
    • 11. Мартынов А.В., Бродянский В.М. «Что такое вихревая труба?». М.: Энергия, 1976.
    • 12. Калиниченко А.Б., Куртик Ф.А. Теплогенератор с самым высоким КПД. // «Экономика и производство», № 12, 1998.
    • 13. Мартынов А.В., Янов А.В., Головко В.М. Система децентрализованного теплоснабжения на базе автономного теплогенератора. // «Строительные материалы, оборудование, технологии 21 века», № 11, 2003.

    К.т.н. А.В. Мартынов, доцент,
    кафедра «Промышленные теплоэнергетические системы»,
    Московский энергетический институт (ТУ)

    (доклад на второй научно-практической конференции «Системы теплоснабжения. Современные решения», г. Звенигород, 16-18 мая 2006 г.).

    Децентрализованные потребители, которые из-за больших расстояний от ТЭЦ не могут быть охвачены централизованным теплоснабжением, должны иметь рациональное (эффективное) теплоснабжение, отвечающее современному техническому уровню и комфортности.

    Масштабы потребления топлива на теплоснабжение весьма велики. В настоящее время теплоснабжение промышленных, общественных и жилых зданий осуществляется примерно на 40+50% от котельных, что является не эффективным из-за их низкого КПД (в котельных температура сгорания топлива составляет примерно 1500 ОС, а тепло потребителю выдается при существенно более низких температурах (60+100 ОС)).

    Таким образом, нерациональное использование топлива, когда часть тепла вылетает в трубу, приводит к истощению запасов топливно-энергетических ресурсов (ТЭР).

    Постепенное истощение запасов топливно-энергетических ресурсов в европейской части нашей страны потребовало в свое время развития топливно-энергетического комплекса в ее восточных районах, что резко увеличило затраты на добычу и транспорт топлива. В этой ситуации необходимо решить важнейшую задачу по экономии и рациональному использованию ТЭР, т.к. запасы их ограничены и по мере их уменьшения стоимость топлива будет неуклонно расти.

    В связи с этим эффективным энергосберегающим мероприятием является разработка и внедрение децентрализованных систем теплоснабжения с рассеянными автономными источниками тепла.

    В настоящее время наиболее целесообразным являются децентрализованные системы теплоснабжения, базирующиеся на нетрадиционных источниках тепла, таких как: солнце, ветер, вода.

    Ниже рассмотрим только два аспекта вовлечения нетрадиционной энергетики:

    Теплоснабжение на базе тепловых насосов;

    Теплоснабжение на базе автономных водяных теплогенераторов.

    Теплоснабжение на базе тепловых насосов

    Основное назначение тепловых насосов (ТН) -отопление и горячее водоснабжение с использованием природных низкопотенциальных источников тепла (НПИТ) и сбросного тепла промышленного и коммунально-бытового сектора.

    К достоинствам децентрализованных тепловых систем относится повышенная надежность теплоснабжения, т.к. они не связаны тепловыми сетями, которые в нашей стране превышают 20 тыс. км, причем большая часть трубопроводов находится в эксплуатации сверх нормативного срока службы (25 лет), что приводит к авариям . Кроме этого, строительство протяженных теплотрасс сопряжено со значительными капитальными затратами и большими потерями тепла. Тепловые насосы по принципу действия относятся к трансформаторам тепла, в которых изменение потенциала тепла (температуры) происходит в результате подведенной извне работы .

    Энергетическая эффективность тепловых насосов оценивается коэффициентами трансформации, учитывающими полученный «эффект», отнесенный к затраченной работе и КПД.

    Полученный эффект - это количество тепла Qв, которое производит ТН. Количество тепла Qв, отнесенное к затраченной мощности Nэл на привод ТН, показывает, сколько единиц тепла получается на единицу затраченной электрической мощности. Это отношение μ=0Β/Νэлι

    называют коэффициентом преобразования или трансформации тепла, который для ТН всегда больше 1. Некоторые авторы называют этот коэффициент КПД, но коэффициент полезного действия не может быть больше 100%. Ошибка здесь в том, что тепло Qв (как неорганизованная форма энергии) делится на Nэл (электрическую, т.е. организованную энергию) .

    КПД же должен учитывать не просто количество энергии, а работоспособность данного количества энергии. Следовательно, КПД - это отношение работоспособностей (или эксергий) любых видов энергии :

    где: Еq - работоспособность (эксергия) тепла Qв; Е N - работоспособность (эксергия) электрической энергии Nэл.

    Так как тепло всегда связано с температурой, при которой это тепло получается, то следовательно работоспособность (эксергия) тепла зависит от температурного уровня T и определяется:

    где τ - коэффициент работоспособности тепла (или «фактор Карно»):

    q=(Т-Тос)/Т=1-Тос/

    где Тос - температура окружающей среды.

    Для каждого теплового насоса эти показатели равны:

    1. Коэффициент трансформации тепла:

    μ=qв/l=Qв/Nэл■

    η=ΡΒ(τς)Β//=Ι*(τς)Β>

    где: qв - удельное количество тепла, кДж/кг;

    Qв - полное количество тепла, кДж/с;

    / - удельная затрата работы, кДж/кг;

    1\1ЭЛ - электрическая мощность, кВт;

    (tq)B - коэффициент работоспособности тепла =

    1-Тос/Тв.

    Для реальных ТН коэффициент трансформации составляет μ=3-!-4, в то время как η=30-40%. Это означает, что на каждый затраченный кВт.ч электрической энергии получается QB=3-i-4 кВт.ч тепла. Это является основным преимуществом ТН перед другими способами получения тепла (электрический нагрев, котельная и т.п.).

    За несколько последних десятков лет во всем мире резко возросло производство тепловых насосов, но в нашей стране ТН до настоящего времени не нашли широкого применения.

    Причин здесь несколько.

    1. Традиционная ориентация на централизованное теплоснабжение.

    2. Неблагоприятное соотношение между стоимостью электроэнергии и топлива.

    3. Изготовление ТН проводится, как правило, на базе наиболее близких по параметрам холодильных машин, что не всегда приводит к оптимальным характеристикам ТН. Проектирование серийных ТН на конкретные характеристики, принятое за рубежом, существенно повышает как эксплуатационные, так и энергетические характеристики ТН.

    Выпуск теплонасосного оборудования в США, Японии, ФРГ, Франции, Англии и других странах базируется на производственных мощностях холодильного машиностроения. ТН в этих странах применяются, в основном, для теплоснабжения и горячего водоснабжения жилищного, торгового и промышленного секторов.

    В США, например, эксплуатируется свыше 4 млн единиц тепловых насосов небольшой, до 20 кВт, производительности тепла на базе поршневых или ротационных компрессоров. Теплоснабжение школ, торговых центров, бассейнов осуществляется ТН теплопроизводительностью 40 кВт, выполняемыми на базе поршневых и винтовых компрессоров. Теплоснабжение районов, городов - крупными ТН на базе центробежных компрессоров с Qв свыше 400 кВт тепла. В Швеции из 130 тыс. работающих ТН более 100 - теплопроизводительностью 10 МВт и более. В Стокгольме теплоснабжение на 50% производится от ТН.

    В промышленности тепловые насосы утилизируют низкопотенциальное тепло производственных процессов. Анализ возможности применения ТН в промышленности, проведенный на предприятиях 100 шведских компаний, показал, что наиболее подходящей сферой для применения ТН являются предприятия химической, пищевой и текстильной промышленности.

    В нашей стране вопросами применения ТН начали заниматься с 1926 г. . В промышленности с 1976 г. работали ТН на чайной фабрике (г. Самтредия, Грузия) , на Подольском химико-металлургическом заводе (ПХМЗ) с 1987 г. , на Сагареджойском молочном комбинате, Грузия, в подмосковном молочно-животноводческом совхозе «Горки-2» с 1963 г. Кроме промышленности ТН в то время начали применяться в торговом центре (г. Сухуми) для теплохладоснабжения, в жилом доме (пос. Бу-курия, Молдова), в пансионате «Дружба» (г. Ялта), климатологической больнице (г. Гагра), курортном зале Пицунды.

    В России в настоящее время ТН изготавливаются по индивидуальным заказам различными фирмами в Нижнем Новгороде, Новосибирске, Москве. Так, например, фирмой «Тритон» в Нижнем Новгороде выпускаются ТН теплопроизводительностью от 10 до 2000 кВт с мощностью компрессоров Nэл от 3 до 620 кВт.

    В качестве низкопотенциальных источников тепла (НПИТ) для ТН наибольшее распространение находит вода и воздух. Отсюда наиболее часто применяемыми схемами ТН являются «вода-воздух» и «воздух-воздух». По таким схемам ТН выпускают фирмы: «Сагriг«, «Lеnnох», Westinghous», «General Electrik» (США), «Нitachi», «Daikin» (Япония), «Sulzer» (Швеция), «ЧКД» (Чехия), «Klimatechnik» (Германия). В последнее время в качестве НПИТ используют сбросные промышленные и канализационные стоки.

    В странах с более суровыми климатическими условиями целесообразно применять ТН совместно с традиционными источниками тепла. При этом в отопительный период теплоснабжение зданий осуществляется преимущественно от теплового насоса (80-90% годового потребления), а пиковые нагрузки (при низких температурах) покрываются электрокотлами или котельными на органическом топливе.

    Применение тепловых насосов приводит к экономии органического топлива. Это особенно актуально для удаленных регионов, таких как северные районы Сибири, Приморья, где имеются гидроэлектростанции, а транспортировка топлива затруднена. При среднегодовом коэффициенте трансформации м=3-4 экономия топлива от применения ТН по сравнению с котельной составляет 30-5-40%, т.е. в среднем 6-5-8 кг у.т./ГДж. При увеличении м до 5, экономия топлива возрастает примерно до 20+25 кг у.т./ГДж по сравнению с котельными на органическом топливе и до 45+65 кгу.т./ГДж по сравнению с электрокотлами.

    Таким образом, ТН в 1,5-5-2,5 раза выгоднее котельных. Стоимость тепла от ТН примерно в 1,5 раза ниже стоимости тепла от централизованного теплоснабжения и в 2-5-3 раза ниже угольных и мазутных котельных.

    Одной из важнейших задач является утилизация тепла сбросной воды тепловых электростанций . Важнейшей предпосылкой внедрения ТН являются большие объемы тепла, выбрасываемые в градирни. Так, например, суммарная величина сбросного тепла на городских и прилегающих к Москве ТЭЦ в период с ноября по март отопительного сезона составляет 1600-5-2000 Гкал/ч. С помощью ТН можно передать большую часть этого сбросного тепла (около 50-5-60%) в теплосеть. При этом:

    На производство этого тепла не надо затрачивать дополнительное топливо;

    Улучшилась бы экологическая обстановка;

    За счет снижения температуры циркуляционной воды в конденсаторах турбин существенно улучшится вакуум и повысится выработка электроэнергии.

    Масштабы внедрения ТН только в ОАО «Мосэнерго» могут быть весьма значительны и применение их на «сбросном» тепле гради-

    рен может достигать 1600-5-2000 Гкал/ч. Таким образом, применение ТН на ТЭЦ выгодно не только технологически (улучшение вакуума), но и экологически (реальная экономия топлива или повышение тепловой мощности ТЭЦ без дополнительных расходов топлива и капитальных затрат) . Все это позволит в тепловых сетях увеличить присоединенную нагрузку.

    Рис.1. Принципиальная схема системы теплоснабжения ВТГ:

    1 - центробежный насос; 2 - вихревая труба; 3 - расходомер; 4 - термометр; 5 - трехходовой кран; 6 - вентиль;

    7 - батарея; 8 - калорифер.

    Теплоснабжение на базе автономных водяных теплогенераторов

    Автономные водяные теплогенераторы (АТГ) предназначены для получения нагретой воды, которая используется для теплоснабжения различных промышленных и гражданских объектов.

    АТГ включает в свой состав центробежный насос и специальное устройство, создающее гидравлическое сопротивление. Специальное устройство может иметь различную конструкцию, эффективность работы которой зависит от оптимизации режимных факторов, определяемых НОУ-ХАУ-разработками.

    Одним из вариантов специального гидравлического устройства является вихревая труба, включаемая в систему децентрализованного теплоснабжения, работающая на воде .

    Применение системы децентрализованного теплоснабжения весьма перспективно, т.к. вода, являясь рабочим веществом, используется непосредственно для отопления и горячего во-

    доснабжения, тем самым делая эти системы экологически чистыми и надежными в эксплуатации. Такая децентрализованная система теплоснабжения была смонтирована и испытана в лаборатории Основ трансформации тепла (ОТТ) кафедры Промышленных теплоэнергетических систем (ПТС) МЭИ.

    Система теплоснабжения состоит их центробежного насоса, вихревой трубы и стандартных элементов: батареи и калорифера. Указанные стандартные элементы являются неотъемлемыми частями любых систем теплоснабжения и поэтому их наличие и успешная работа дают основания утверждать о надежной работе любой системы теплоснабжения, включающей эти элементы.

    На рис. 1 представлена принципиальная схема системы теплоснабжения. Система заполнена водой, которая, нагреваясь, поступает в батарею и калорифер. Система снабжена переключающей арматурой (трехходовыми кранами и вентилями), которая позволяет осуществлять последовательное и параллельное включение батареи и калорифера.

    Работа системы осуществлялась следующим образом. Через расширительный бачок система заполняется водой таким образом, чтобы из системы был удален воздух, что затем контролируется по манометру. После этого на шкаф блока управления подается напряжение, задатчиком температуры устанавливается температура воды, подаваемой в систему (50-5-90 ОС), и включается центробежный насос. Время выхода на режим зависит от заданной температуры. При заданной tв=60 ОС время выхода на режим составляет t=40 мин. Температурный график работы системы представлен на рис. 2.

    Пусковой период системы составил 40+45 мин. Темп повышения температуры составил Q=1,5 град/мин.

    Для измерения температуры воды на входе и выходе из системы установлены термометры 4, а для определения расхода - расходомер 3.

    Центробежный насос был установлен на легкой передвижной подставке, изготовление которой можно осуществить в любой мастерской. Остальное оборудование (батарея и калорифер) стандартное, приобретаются в специализированных торговых фирмах (магазинах).

    Арматура (трехходовые краны, вентили, уголки, переходники и т.д.) также приобретаются в магазинах. Система смонтирована из пластиковых труб, сварка которых осуществлялась специальным сварочным агрегатом, который имеется в лаборатории ОТТ.

    Разность температур воды в прямой и обратной магистралях составила примерно 2 ОС (Δt=tnp-to6=1,6). Время работы центробежного насоса ВТГ составляло в каждом цикле 98 с, паузы длились по 82 с, время одного цикла равнялось 3 мин.

    Система теплоснабжения, как показали испытания, работает устойчиво и в автоматическом режиме (без участия обслуживающего персонала) поддерживает первоначально заданную температуру в интервале t=60-61 ОС.

    Система теплоснабжения работала при последовательном по воде включении батареи и калорифера.

    Эффективность системы оценивается:

    1. Коэффициентом трансформации тепла

    μ=(Ο6+Οκ)/νν=ΣΟ/νν;

    2. Коэффициентом полезного действия

    где: 20 =Q6+QK - количество тепла, отданное системой;

    W - количество электрической энергии, затраченное на привод центробежного насоса; tq=1-T0C/TB - коэффициент работоспособности тепла;

    Тв - температурный уровень отданного тепла; Тос - температура окружающей среды.

    При затраченной электроэнергии W=2 кВт.ч, количество произведенного тепла за этот период составило 20=3816,8 ккал. Коэффициент трансформации равен: μ=3816,8/1720=2,22.

    КПД равен η=μτ =2,22.0,115=0,255 (~25%), где: tq=1 -(293/331)=0,115.

    Из энергетического баланса системы видно, что дополнительное количество теплоты, выработанное системой, составляло 2096,8 ккал. На сегодняшний день существуют различные гипотезы, пытающиеся объяснить, как появляется дополнительное количество теплоты, но однозначного общепризнанного решения нет.

    Выводы

    1. Децентрализованные системы теплоснабжения не требуют протяженных теплотрасс, а следовательно - больших капитальных затрат.

    2. Использование децентрализованных систем теплоснабжения позволяет существенно сократить вредные выбросы от сгорания топлива в атмосферу, что улучшает экологическую обстановку.

    3. Использование тепловых насосов в системах децентрализованного теплоснабжения для объектов промышленного и гражданского секторов позволяет по сравнению с котельными экономить топливо в количестве 6+8 кг у.т. на 1 Гкал выработанного тепла, что составляет примерно 30-5-40%.

    4. Децентрализованные системы на базе ТН успешно применяются во многих зарубежных странах (США, Япония, Норвегия, Швеция и др.). Изготовлением ТН занимаются более 30 фирм.

    5. В лаборатории ОТТ кафедры ПТС МЭИ смонтирована автономная (децентрализованная) система теплоснабжения на базе центробежного водяного теплогенератора.

    Система работает в автоматическом режиме, поддерживая температуру воды в подающей магистрали в любом заданном интервале от 60 до 90 ОС.

    Коэффициент трансформации тепла системы составляет м=1,5-5-2, а КПД равен около 25%.

    6. Дальнейшее повышение энергетической эффективности децентрализованных систем теплоснабжения требует проведения научно-технических исследований с целью определения оптимальных режимов работы.

    Литература

    1. Соколов Е. Я. и др. Прохладное отношение к теплу. Известия от 17.06.1987.

    2. Михельсон В. А. О динамическом отоплении. Прикладная физика. Т.III, вып. З-4, 1926.

    3. Янтовский Е.И., Пустовалов Ю.В. Парокомпрессионные теплонасосные установки. - М.: Энергоиздат, 1982.

    4. Везиришвили О.Ш., Меладзе Н. В. Энергосберегающие теплонасосные системы тепло- и хладоснабжения. - М.: Издательство МЭИ, 1994.

    5. Мартынов А. В., Петраков Г. Н. Двухцелевой тепловой насос. Промышленная энергетика № 12, 1994.

    6. Мартынов А. В., Яворовский Ю. В. Использование ВЭР на предприятиях химической промышленности на базе ТНУ. Химическая промышленность № 4, 2000.

    7. Бродянский В.М. и др. Эксергетический метод и его приложения. - М.: Энергоиздат, 1986.

    8. Соколов Е.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения - М.: Энергоиздат, 1981.

    9. Мартынов А.В. Установки для трансформации тепла и охлаждения. - М.: Энергоатомиздат, 1989.

    10. ДевянинД.Н., ПищиковС.И., Соколов Ю.Н. Тепловые насосы - разработка и испытание на ТЭЦ-28. // «Новости теплоснабжения», № 1, 2000.

    12. Калиниченко А.Б., Куртик Ф.А. Теплогенератор с самым высоким КПД. // «Экономика и производство», № 12, 1998.

    13. Мартынов А.В., Янов А.В., Головко В.М. Система децентрализованного теплоснабжения на базе автономного теплогенератора. // «Строительные материалы, оборудование, технологии 21 века», № 11, 2003.

    От редакции : На второй научно-практической конференции «Системы теплоснабжения. Современные решения», которую уже традиционно проводит Некоммерческое Партнерство «Российское теплоснабжение», после ряда докладов, посвященных вихревым генераторам тепла, развернулась жаркая дискуссия. Собравшиеся пришли к выводу, что получение тепла в количестве, превышающем затраченную электроэнергию, свидетельствует о том, что современная наука еще не может указать источник этой энергии и его природу, а значит, пользоваться этим явлением следует с крайней осторожностью, т.к. влияние этой установки на окружающую среду и людей не изучены.

    Это подтверждается и современными исследованиями. Например, на международной конференции «Аномальные физические явления в энергетике и перспективы создания нетрадиционных источников энергии», состоявшейся 15-16 июня 2005 г. в Харькове, несколько групп исследователей из разных городов Украины сообщили, что они обнаружили радиационное излучение, создаваемое вихревым теплогенератором.

    Так, например, специалисты Института технической теплофизики НАН Украины обнаружили участок на торце вихревой трубы с повышенным (в 1,3-1,9 раза) гамма-излучением по сравнению с фоновым значением. Информация о данном эксперименте была также опубликована в журнале «Промышленная теплотехника» (Киев) № 6, 2002 г. в статье Халатова А.А., Коваленко А.С., Шевцова С.В. «Определение коэффициента преобразования энергии в вихревом теплогенераторе типа ТПМ 5,5-1». Авторами статьи отмечено, что природа этого излучения пока не совсем понятна и требует дальнейшего изучения.

    Отсутствие горячей воды и тепла еще с давних пор является дамокловым мечом для многих петербургских квартир. Отключения происходят ежегодно, причем в самые неподходящие моменты. При этом наш европейский город остается одним из самых консервативных мегаполисов, преимущественно используя потенциально опасную для жизни и здоровья горожан централизованную систему подачи тепла. Тогда как ближайшие соседи уже давно используют инновационные разработки в этой сфере, считает "Кто строит в Петербурге".

    Децентрализованное горячее водоснабжение (ГВС) и теплоснабжение до сих пор применялось лишь при отсутствии централизованного теплоснабжения или когда возможности централизованного обеспечения горячей водой ограничены. Инновационные современные технологии позволяют применять системы децентрализованного приготовления горячей воды при строительстве и реконструкции многоэтажных домов.

    Локальное теплоснабжение имеет массу плюсов. В первую очередь улучшается качество жизни петербуржцев: отопление можно включать в любой сезон, независимо от среднесуточной температуры за окном, из крана течет гигиенически чистая вода, сокращается возможность размывов и ожогов и аварийность системы. Кроме того, система обеспечивает оптимальное распределение тепла, максимально исключает теплопотери, а также позволяет рационально учитывать потребление ресурсов.

    Источником местного приготовления горячей воды в жилых и общественных зданиях являются газовые и электрические водонагреватели или водогрейные колонки на твердом или газовом топливе.

    «Есть несколько схем организации децентрализованного отопления и горячего водоснабжения в многоквартирных домах: газовая котельная на дом и КТП в каждой квартире, газовый котел и КТП в каждой квартире, тепловые сети и КТП в каждой квартире», - рассказывает технический консультант по квартирным тепловым пунктам Алексей Леплявкин.

    Газ не для всех

    Газовые водонагреватели используют в газифицированных жилых домах высотой не более пяти этажей. В отдельных помещениях общественных зданий (в ванных комнатах гостиниц, домов отдыха и санаториев; в школах, кроме буфетов и жилых помещений; в душевых спортзалов и котельных), где неограничен доступ лиц, не обученных правилам пользования газовыми приборами, установка индивидуальных газовых водонагревателей не допускается.

    Газовые водонагреватели бывают проточные и емкостные. Проточные быстродействующие водонагреватели устанавливают в кухнях жилых квартир. Рассчитаны они для двухточечного водоразбора. Более мощные, например, емкостные автоматические газовые водонагреватели типа АГВ применяют для совмещенного местного отопления и горячего водоснабжения жилых помещений. Допускается их установка и на кухнях общего пользования общежитий и гостиниц.

    Квартирные тепловые пункты

    Одним из прогрессивных технических решений в области повышения энергоэффективности и безопасности является применение КТП с индивидуальной внутриквартирной подготовкой горячей воды.

    Автономное оборудование в таких схемах не предусматривает использование для ГВС сетевой воды, качество которой оставляет желать лучшего. Уход от низкого качества воды обеспечивается при переходе на закрытую систему, где используется городская вода системы ХВС, подогретая на месте потребления. По мнению главного специалиста ООО «Межрегиональная негосударственная экспертиза» Бориса Булина, ключевым моментом в вопросе энергоэффективности систем теплоснабжения являются системы теплопотребления зданий. «Максимальный эффект энергосбережения тепловой энергии в отапливаемых зданиях достигается только при применении децентрализованной внутридомовой схемы теплоснабжения зданий, то есть при автономном регулировании систем теплопотребления (отопление и горячее водоснабжение) в пределах каждой квартиры в сочетании с обязательным учетом расхода тепловой энергии в них же. Для реализации этого принципа теплоснабжения зданий ЖКХ необходима установка в каждой квартире КТП в комплектации с теплосчетчиком», - говорит эксперт.

    Применение квартирных тепловых пунктов (в комплектации с теплосчетчиками) в схеме теплоснабжения многоквартирных зданий имеет много преимуществ по сравнению с традиционной схемой теплоснабжения. Основное из этих преимуществ – возможность владельцам квартир самостоятельно устанавливать необходимый экономичный тепловой режим и определять приемлемую оплату за потребленную тепловую энергию.

    Труба будет проходить от КТП до точек водоразбора, поэтому в здании практически отсутствуют тепловые потери от трубопроводов системы ГВС.

    Системы децентрализованного приготовления горячей воды и тепла могут использоваться в возводимых многоквартирных жилых домах, реконструируемых многоквартирных зданиях, коттеджных поселках или отдельно стоящих коттеджах.

    Концепция такой системы имеет модульный принцип построения, поэтому открывает широкие возможности для дальнейшего расширения опций: подключение контура теплых полов, возможность автоматического регулирования температуры теплоносителя с помощью комнатного термостата, либо погодозависимой автоматики с датчиком наружной температуры.

    Поквартирные тепловые пункты уже используются строителями в других регионах. В ряде городов, включая Москву, приступили к масштабному внедрению этих технических новинок. В Петербурге ноу-хау будет впервые использовано при строительстве элитного ЖК «Леонтьевский мыс».

    Иван Евдокимов, директор по развитию бизнеса ГК «Портал групп»:

    Свойственное для Петербурга центральное горячее водоснабжение имеет как свои преимущества, так и недостатки. Поскольку централизованное ГВС в городе налажено, то для конечного потребителя на сегодняшнем этапе это будет дешевле и проще. При этом в долгосрочной перспективе ремонт и развитие инженерных сетей требуют гораздо больших капиталовложений, чем если бы системы обеспечения горячей водой располагались ближе к потребителю.

    Но если на центральной станции происходит какая-то авария или запланированный ремонт, то тепла и горячей воды лишается сразу целый район. Кроме того, подача тепла начинается в запланированный период, поэтому, если в городе резко наступают морозы в сентябре или мае, когда центральное отопление уже отключено, нагревать помещение приходится дополнительными источниками. Тем не менее, Правительство Санкт-Петербурга ориентируется на централизованное водоснабжение в силу геологических и климатических особенностей города. Кроме того, децентрализованные системы ГВС будут являться общей собственностью жителей многоквартирных домов, что наложит на них дополнительную ответственность.

    Николай Кузнецов, руководитель отдела загородной недвижимости (вторичный рынок) АН «БЕКАР»:

    Децентрализованное приготовление горячей воды является дополнительным преимуществом для потребителей с точки зрения экономии энергоресурсов. Однако установка индивидуальных котлов в домах влечет за собой сокращение полезной площади самого объекта. Для установки котла необходимо выделить помещение площадью от 2 до 4 метров, которое в противном случае можно было бы использовать в качестве гардеробной комнаты или кладовки. Разумеется, в доме ценность имеет каждый метр, поэтому некоторые клиенты могут переплачивать за услуги централизованного отопления, но сохранять драгоценные метры своего дома. Все зависит от потребностей и возможностей каждого покупателя, а также от назначения загородного дома. Если объект используется для временного проживания, то более выгодным вариантом считается децентрализованное отопление, при котором оплата будет производиться лишь за потраченные энергоресурсы.

    Для застройщиков более выгодным вариантом является децентрализованное приготовление горячей воды, поскольку чаще всего компании не устанавливают котлы в дома, а предлагают выбрать, оплатить и установить их клиентам самостоятельно. На сегодняшний день данная технология уже активно используется в коттеджных поселках, расположенных как на территории города, так и области. Исключение составляют элитные проекты, в которых застройщик чаще всего все-таки устанавливает общую котельную.